504 research outputs found

    Fundamental Differences in Mechanical Behavior between Two Types of Crystals at the Nanoscale

    Get PDF
    We present differences in the mechanical behavior of nanoscale gold and molybdenum single crystals. A significant strength increase is observed as the size is reduced to 100 nm. Both nanocrystals exhibit discrete strain bursts during plastic deformation. We postulate that they arise from significant differences in the dislocation behavior. Dislocation starvation is the predominant mechanism of plasticity in nanoscale fcc crystals, while junction formation and hardening characterize bcc plasticity. A statistical analysis of strain bursts is performed as a function of size and compared with stochastic models

    Short-lived brominated hydrocarbons – observations in the source regions and the tropical tropopause layer

    Get PDF
    We conducted measurements of the five important short-lived organic bromine species in the marine boundary layer (MBL). Measurements were made in the Northern Hemisphere mid-latitudes (Sylt Island, North Sea) in June 2009 and in the tropical Western Pacific during the TransBrom ship campaign in October 2009. For the one-week time series on Sylt Island, mean mixing ratios of CHBr3, CH2Br2, CHBr2Cl and CH2BrCl were 2.0, 1.1, 0.2, 0.1 ppt, respectively. We found maxima of 5.8 and 1.6 ppt for the two main components CHBr3 and CH2Br2. Along the cruise track in the Western Pacific (between 41° N and 13° S) we measured mean mixing ratios of 0.9, 0.9, 0.2, 0.1 and 0.1 ppt for CHBr3, CH2Br2, CHBrCl2, CHBr2Cl and CH2BrCl. Air samples with coastal influence showed considerably higher mixing ratios than the samples with open ocean origin. Correlation analyses of the two data sets yielded strong linear relationships between the mixing ratios of four of the five species (except for CH2BrCl). Using a combined data set from the two campaigns and a comparison with the results from two former studies, rough estimates of the molar emission ratios between the correlated substances were: 9/1/0.35/0.35 for CHBr3/CH2Br2/CHBrCl2/CHBr2Cl. Additional measurements were made in the tropical tropopause layer (TTL) above Teresina (Brazil, 5° S) in June 2008, using balloon-borne cryogenic whole air sampling technique. Near the level of zero clear-sky net radiative heating (LZRH) at 14.8 km about 2.25 ppt organic bromine was bound to the five short-lived species, making up 13% of total organic bromine (17.82 ppt). CH2Br2 (1.45 ppt) and CHBr3 (0.56 ppt) accounted for 90% of the budget of short-lived compounds in that region. Near the tropopause (at 17.5 km) organic bromine from these substances was reduced to 1.35 ppt, with 1.07 and 0.12 ppt attributed to CH2Br2 and CHBr3, respectively

    Neel order, quantum spin liquids and quantum criticality in two dimensions

    Full text link
    This paper is concerned with the possibility of a direct second order transition out of a collinear Neel phase to a paramagnetic spin liquid in two dimensional quantum antiferromagnets. Contrary to conventional wisdom, we show that such second order quantum transitions can potentially occur to certain spin liquid states popular in theories of the cuprates. We provide a theory of this transition and study its universal properties in an ϵ\epsilon expansion. The existence of such a transition has a number of interesting implications for spin liquid based approaches to the underdoped cuprates. In particular it considerably clarifies existing ideas for incorporating antiferromagnetic long range order into such a spin liquid based approach.Comment: 18 pages, 17 figure

    Where is the pi particle?

    Full text link
    We discuss the interplay of particle-particle and particle-hole spin-triplet channels in high-T_c superconductors using a quasiparticle dispersion motivated by angle-resolved photoemission. Within a generalized RPA, we find a well defined antibound state of two holes, the pi resonance of Demler and Zhang, as well as a bound state of a particle and a hole, the spin exciton. We show that the energy of the pi resonance always exceeds 2 Delta, twice the maximum d-wave gap, therefore the neutron resonance observed in the cuprates around energy Delta is most likely a spin exciton. At the same time, we speculate that the pi particle can exist at higher energies and might be observed in neutron scattering around 100 meV.Comment: RevTeX, 5 pages, 4 eps figure

    Elastin is heterogeneously cross-linked

    Get PDF
    Elastin is an essential vertebrate protein responsible for the elasticity of force-bearing tissues such as those of the lungs, blood vessels, and skin. One of the key features required for the exceptional properties of this durable biopolymer is the extensive covalent cross-linking between domains of its monomer molecule tropoelastin. To date, elastin's exact molecular assembly and mechanical properties are poorly understood. Here, using bovine elastin, we investigated the different types of cross-links in mature elastin to gain insight into its structure. We purified and proteolytically cleaved elastin from a single tissue sample into soluble cross-linked and noncross-linked peptides that we studied by high-resolution MS. This analysis enabled the elucidation of cross-links and other elastin modifications. We found that the lysine residues within the tropoelastin sequence were simultaneously unmodified and involved in various types of cross-links with different other domains. The Lys-Pro domains were almost exclusively linked via lysinonorleucine, whereas Lys-Ala domains were found to be cross-linked via lysinonorleucine, allysine aldol, and desmosine. Unexpectedly, we identified a high number of intramolecular cross-links between lysine residues in close proximity. In summary, we show on the molecular level that elastin formation involves random cross-linking of tropoelastin monomers resulting in an unordered network, an unexpected finding compared with previous assumptions of an overall beaded structure

    Increased fibrosis in a mouse model of anti-laminin 332 mucous membrane pemphigoid remains unaltered by inhibition of aldehyde dehydrogenase

    Get PDF
    Mucous membrane pemphigoid (MMP) is an autoimmune blistering disease characterized by autoantibodies against the basal membrane zone of skin and surface-close epithelia and predominant mucosal lesions. The oral cavity and conjunctivae are most frequently affected, albeit clinical manifestations can also occur on the skin. MMP-associated lesions outside the oral cavity typically lead to scarring. Mechanisms underlying scarring are largely unknown in MMP and effective treatment options are limited. Herein, we assessed the collagen architecture in tissue samples of an antibody-transfer mouse model of anti-laminin-332 MMP. In MMP mice, increased collagen fibril density was observed in skin and conjunctival lesions compared to mice injected with normal rabbit IgG. The extracellular matrix of MMP skin samples also showed altered post-translational collagen cross-linking with increased levels of both lysine- and hydroxylysine-derived collagen crosslinks supporting the fibrotic phenotype in experimental MMP compared to control animals. In addition, we evaluated a potential anti-fibrotic therapy in experimental anti-laminin-332 MMP using disulfiram, an inhibitor of the aldehyde dehydrogenase (ALDH), which has been implicated in immune-mediated mucosal scarring. In addition, disulfiram also acts as a copper chelator that was shown to block lysyl oxidase activity, an enzyme involved in formation of collagen crosslinks. Topical use of disulfiram (300 μM in 2 [w/v] methocel) did not improve ocular lesions in experimental MMP over the 12-day treatment period in disulfiram-treated mice compared to vehicle-treated mice (n=8/group). Furthermore, C57BL6/J mice (n=8/group) were treated prophylactically with 200 mg/kg p.o. disulfiram or the solvent once daily over a period of 12 days. Systemic treatment did not show any reduction in the severity of oral and ocular lesions in MMP mice, albeit some improvement in skin lesions was observed in disulfiram- vs. vehicle-treated mice (p=0.052). No reduction in fibrosis was seen, as assessed by immunohistochemistry. Whilst blocking of ALDH failed to significantly ameliorate disease activity, our data provide new insight into fibrotic processes highlighting changes in the collagenous matrix and cross-linking patterns in IgG-mediated MMP

    N\'eel transition, spin fluctuations, and pseudogap in underdoped cuprates by a Lorentz invariant four-fermion model in 2+1 dimensions

    Full text link
    We show that the N\'eel transition and spin fluctuations near the N\'eel transition in planar cuprates can be described by an SU(2) invariant relativistic four-fermion model in 2+1 dimensions. Features of the pseudogap phenomenon are naturally described by the appearance of an anomalous dimension for the spinon propagator.Comment: 5 pages, 2 figures (revtex4). Final revised and corrected versio

    Predicting a Gapless Spin-1 Neutral Collective Mode branch for Graphite

    Full text link
    Using the standard tight binding model of 2d graphite with short range electron repulsion, we find a gapless spin-1, neutral collective mode branch {\em below the particle-hole continuum} with energy vanishing linearly with momenta at the Γ\Gamma and KK points in the BZ. This spin-1 mode has a wide energy dispersion, 0 to 2eV\sim 2 eV and is not Landau damped. The `Dirac cone spectrum' of electrons at the chemical potential of graphite generates our collective mode; so we call this `spin-1 zero sound' of the `Dirac sea'. Epithermal neutron scattering experiments, where graphite single crystals are often used as analyzers (an opportunity for `self-analysis'!), and spin polarized electron energy loss spectroscopy (SPEELS) can be used to confirm and study our collective mode.Comment: 4 pages of LaTex file, 3 eps figure file
    corecore