363 research outputs found

    Local softness, softness dipole and polarizabilities of functional groups: application to the side chains of the twenty amino acids

    Full text link
    The values of molecular polarizabilities and softnesses of the twenty amino acids were computed ab initio (MP2). By using the iterative Hirshfeld scheme to partition the molecular electronic properties, we demonstrate that the values of the softness of the side chain of the twenty amino acid are clustered in groups reflecting their biochemical classification, namely: aliphatic, basic, acidic, sulfur containing, and aromatic amino acids . The present findings are in agreement with previous results using different approximations and partitioning schemes [P. Senet and F. Aparicio, J. Chem. Phys. 126,145105 (2007)]. In addition, we show that the polarizability of the side chain of an amino acid depends mainly on its number of electrons (reflecting its size) and consequently cannot be used to cluster the amino acids in different biochemical groups, in contrast to the local softness. Our results also demonstrate that the global softness is not simply proportional to the global polarizability in disagreement with the intuition that "a softer moiety is also more polarizable". Amino acids with the same softness may have a polarizability differing by a factor as large as 1.7. This discrepancy can be understood from first principles as we show that the molecular polarizability depends on a "softness dipole vector" and not simply on the global softness

    Molecular dynamics study of zinc binding to cysteines in a peptide mimic of the alcohol dehydrogenase structural zinc site

    Get PDF
    The binding of zinc (Zn) ions to proteins is important for many cellular events. The theoretical and computational description of this binding (as well as that of other transition metals) is a challenging task. In this paper the binding of the Zn ion to four cysteine residues in the structural site of horse liver alcohol dehydrogenase (HLADH) is studied using a synthetic peptide mimic of this site. The study includes experimental measurements of binding constants, classical free energy calculations from molecular dynamics (MD) simulations and quantum mechanical (QM) electron structure calculations. The classical MD results account for interactions at the molecular level and reproduce the absolute binding energy and the hydration free energy of the Zn ion with an accuracy of about 10%. This is insufficient to obtain correct free energy differences. QM correction terms were calculated from density functional theory (DFT) on small clusters of atoms to include electronic polarisation of the closest waters and covalent contributions to the Zn-S coordination bond. This results in reasonably good agreement with the experimentally measured binding constants and Zn ion hydration free energies in agreement with published experimental values. The study also includes the replacement of one cysteine residue to an alanine. Simulations as well as experiments showed only a small effect of this upon the binding free energy. A detailed analysis indicate that the sulfur is replaced by three water molecules, thereby changing the coordination number of Zn from four (as in the original peptide) to six (as in water)

    1.9µm operation of a Tm:Lead germanate glass waveguide laser

    No full text
    We report what we believe to be the first planar-technology waveguide laser in the 2-µm region. Laser operation of the 3H4 to 3H6 transition of Tm3+ ions in a lead germanate glass host has been observed in an ion-implanted planar waveguide

    Empathy, engagement, entrainment: the interaction dynamics of aesthetic experience

    Get PDF
    A recent version of the view that aesthetic experience is based in empathy as inner imitation explains aesthetic experience as the automatic simulation of actions, emotions, and bodily sensations depicted in an artwork by motor neurons in the brain. Criticizing the simulation theory for committing to an erroneous concept of empathy and failing to distinguish regular from aesthetic experiences of art, I advance an alternative, dynamic approach and claim that aesthetic experience is enacted and skillful, based in the recognition of others’ experiences as distinct from one’s own. In combining insights from mainly psychology, phenomenology, and cognitive science, the dynamic approach aims to explain the emergence of aesthetic experience in terms of the reciprocal interaction between viewer and artwork. I argue that aesthetic experience emerges by participatory sense-making and revolves around movement as a means for creating meaning. While entrainment merely plays a preparatory part in this, aesthetic engagement constitutes the phenomenological side of coupling to an artwork and provides the context for exploration, and eventually for moving, seeing, and feeling with art. I submit that aesthetic experience emerges from bodily and emotional engagement with works of art via the complementary processes of the perception–action and motion–emotion loops. The former involves the embodied visual exploration of an artwork in physical space, and progressively structures and organizes visual experience by way of perceptual feedback from body movements made in response to the artwork. The latter concerns the movement qualities and shapes of implicit and explicit bodily responses to an artwork that cue emotion and thereby modulate over-all affect and attitude. The two processes cause the viewer to bodily and emotionally move with and be moved by individual works of art, and consequently to recognize another psychological orientation than her own, which explains how art can cause feelings of insight or awe and disclose aspects of life that are unfamiliar or novel to the viewer

    Improving Reconstituted HDL Composition for Efficient Post-Ischemic Reduction of Ischemia Reperfusion Injury.

    Get PDF
    BACKGROUND: New evidence shows that high density lipoproteins (HDL) have protective effects beyond their role in reverse cholesterol transport. Reconstituted HDL (rHDL) offer an attractive means of clinically exploiting these novel effects including cardioprotection against ischemia reperfusion injury (IRI). However, basic rHDL composition is limited to apolipoprotein AI (apoAI) and phospholipids; addition of bioactive compound may enhance its beneficial effects. OBJECTIVE: The aim of this study was to investigate the role of rHDL in post-ischemic model, and to analyze the potential impact of sphingosine-1-phosphate (S1P) in rHDL formulations. METHODS AND RESULTS: The impact of HDL on IRI was investigated using complementary in vivo, ex vivo and in vitro IRI models. Acute post-ischemic treatment with native HDL significantly reduced infarct size and cell death in the ex vivo, isolated heart (Langendorff) model and the in vivo model (-48%, p<0.01). Treatment with rHDL of basic formulation (apoAI + phospholipids) had a non-significant impact on cell death in vitro and on the infarct size ex vivo and in vivo. In contrast, rHDL containing S1P had a highly significant, protective influence ex vivo, and in vivo (-50%, p<0.01). This impact was comparable with the effects observed with native HDL. Pro-survival signaling proteins, Akt, STAT3 and ERK1/2 were similarly activated by HDL and rHDL containing S1P both in vitro (isolated cardiomyocytes) and in vivo. CONCLUSION: HDL afford protection against IRI in a clinically relevant model (post-ischemia). rHDL is significantly protective if supplemented with S1P. The protective impact of HDL appears to target directly the cardiomyocyte

    A 1.9µm thulium doped lead germanate waveguide laser

    No full text
    Tm3+ doped lead germanate glass has already been shown to be a promising source of 1.9µm radiation using the 3H4 to 3H6 transition in a fibre geometry. The maximum vibrational energy of these glasses lies between that of silica and heavy metal fluoride glasses. This increases the radiative lifetime of the upper laser level in comparison to silicates while increasing the multiphonon non-radiative decay from the 3F4 pumping level into the upper laser level in comparison to fluorides. Thus the 1.9µm Tm3+ laser performance is enhanced in these glasses bringing fibre laser thresholds easily within reach of diode pumping. Recent work has also shown that such glasses give very low propagation loss guides (0.15 dB/cm) when implanted with He ions. Here we report lasing in a planar ion-implanted waveguide in Tm-doped lead germanate. This is the first report of lasing for thulium in any planar waveguide system and this is also the longest wavelength so far reported for such systems. This is also the first report of lasing in a glass host using ion-implantation as the means of waveguide fabrication

    A Review of Chemosensation and Related Behavior in Aquatic Insects

    Get PDF
    Insects that are secondarily adapted to aquatic environments are able to sense odors from a diverse array of sources. The antenna of these insects, as in all insects, is the main chemosensory structure and its input to the brain allows for integration of sensory information that ultimately ends in behavioral responses. Only a fraction of the aquatic insect orders have been studied with respect to their sensory biology and most of the work has centered either on the description of the different types of sensilla, or on the behavior of the insect as a whole. In this paper, the literature is exhaustively reviewed and ways in which antennal morphology, brain structure, and associated behavior can advance better understanding of the neurobiology involved in processing of chemosensory information are discussed. Moreover, the importance of studying such group of insects is stated, and at the same time it is shown that many interesting questions regarding olfactory processing can be addressed by looking into the changes that aquatic insects undergo when leaving their aquatic environment
    corecore