slides

A 1.9µm thulium doped lead germanate waveguide laser

Abstract

Tm3+ doped lead germanate glass has already been shown to be a promising source of 1.9µm radiation using the 3H4 to 3H6 transition in a fibre geometry. The maximum vibrational energy of these glasses lies between that of silica and heavy metal fluoride glasses. This increases the radiative lifetime of the upper laser level in comparison to silicates while increasing the multiphonon non-radiative decay from the 3F4 pumping level into the upper laser level in comparison to fluorides. Thus the 1.9µm Tm3+ laser performance is enhanced in these glasses bringing fibre laser thresholds easily within reach of diode pumping. Recent work has also shown that such glasses give very low propagation loss guides (0.15 dB/cm) when implanted with He ions. Here we report lasing in a planar ion-implanted waveguide in Tm-doped lead germanate. This is the first report of lasing for thulium in any planar waveguide system and this is also the longest wavelength so far reported for such systems. This is also the first report of lasing in a glass host using ion-implantation as the means of waveguide fabrication

    Similar works

    Full text

    thumbnail-image

    Available Versions