30 research outputs found

    Rare and low-frequency coding variants alter human adult height

    Get PDF
    Height is a highly heritable, classic polygenic trait with ~700 common associated variants identified so far through genome - wide association studies . Here , we report 83 height - associated coding variants with lower minor allele frequenc ies ( range of 0.1 - 4.8% ) and effects of up to 2 16 cm /allele ( e.g. in IHH , STC2 , AR and CRISPLD2 ) , >10 times the average effect of common variants . In functional follow - up studies, rare height - increasing alleles of STC2 (+1 - 2 cm/allele) compromise d proteolytic inhibition of PAPP - A and increased cleavage of IGFBP - 4 in vitro , resulting in higher bioavailability of insulin - like growth factors . The se 83 height - associated variants overlap genes mutated in monogenic growth disorders and highlight new biological candidates ( e.g. ADAMTS3, IL11RA, NOX4 ) and pathways ( e.g . proteoglycan/ glycosaminoglycan synthesis ) involved in growth . Our results demonstrate that sufficiently large sample sizes can uncover rare and low - frequency variants of moderate to large effect associated with polygenic human phenotypes , and that these variants implicate relevant genes and pathways

    Identifying novel data-driven subgroups in congenital heart disease using multi-modal measures of brain structure

    No full text
    Individuals with congenital heart disease (CHD) have an increased risk of neurodevelopmental impairments. Given the hypothesized complexity linking genomics, atypical brain structure, cardiac diagnoses and their management, and neurodevelopmental outcomes, unsupervised methods may provide unique insight into neurodevelopmental variability in CHD. Using data from the Pediatric Cardiac Genomics Consortium Brain and Genes study, we identified data-driven subgroups of individuals with CHD from measures of brain structure. Using structural magnetic resonance imaging (MRI; N = 93; cortical thickness, cortical volume, and subcortical volume), we identified subgroups that differed primarily on cardiac anatomic lesion and language ability. In contrast, using diffusion MRI (N = 88; white matter connectivity strength), we identified subgroups that were characterized by differences in associations with rare genetic variants and visual-motor function. This work provides insight into the differential impacts of cardiac lesions and genomic variation on brain growth and architecture in patients with CHD, with potentially distinct effects on neurodevelopmental outcomes

    Skin pigmentation, biogeographical ancestry and admixture mapping.

    No full text
    Ancestry informative markers (AIMs) are genetic loci showing alleles with large frequency differences between populations. AIMs can be used to estimate biogeographical ancestry at the level of the population, subgroup (e.g. cases and controls) and individual. Ancestry estimates at both the subgroup and individual level can be directly instructive regarding the genetics of the phenotypes that differ qualitatively or in frequency between populations. These estimates can provide a compelling foundation for the use of admixture mapping (AM) methods to identify the genes underlying these traits. We present details of a panel of 34 AIMs and demonstrate how such studies can proceed, by using skin pigmentation as a model phenotype. We have genotyped these markers in two population samples with primarily African ancestry, viz. African Americans from Washington D.C. and an African Caribbean sample from Britain, and in a sample of European Americans from Pennsylvania. In the two African population samples, we observed significant correlations between estimates of individual ancestry and skin pigmentation as measured by reflectometry (R(2)=0.21, P<0.0001 for the African-American sample and R(2)=0.16, P<0.0001 for the British African-Caribbean sample). These correlations confirm the validity of the ancestry estimates and also indicate the high level of population structure related to admixture, a level that characterizes these populations and that is detectable by using other tests to identify genetic structure. We have also applied two methods of admixture mapping to test for the effects of three candidate genes (TYR, OCA2, MC1R) on pigmentation. We show that TYR and OCA2 have measurable effects on skin pigmentation differences between the west African and west European parental populations. This work indicates that it is possible to estimate the individual ancestry of a person based on DNA analysis with a reasonable number of well-defined genetic markers. The implications and applications of ancestry estimates in biomedical research are discussed

    Probing the Virtual Proteome to Identify Novel Disease Biomarkers

    No full text
    BACKGROUND: Proteomic approaches allow measurement of thousands of proteins in a single specimen, which can accelerate biomarker discovery. However, applying these technologies to massive biobanks is not currently feasible because of the practical barriers and costs of implementing such assays at scale. To overcome these challenges, we used a "virtual proteomic" approach, linking genetically predicted protein levels to clinical diagnoses in >40 000 individuals. METHODS: We used genome-wide association data from the Framingham Heart Study (n=759) to construct genetic predictors for 1129 plasma protein levels. We validated the genetic predictors for 268 proteins and used them to compute predicted protein levels in 41 288 genotyped individuals in the Electronic Medical Records and Genomics (eMERGE) cohort. We tested associations for each predicted protein with 1128 clinical phenotypes. Lead associations were validated with directly measured protein levels and either low-density lipoprotein cholesterol or subclinical atherosclerosis in the MDCS (Malmö Diet and Cancer Study; n=651). RESULTS: In the virtual proteomic analysis in eMERGE, 55 proteins were associated with 89 distinct diagnoses at a false discovery rate q<0.1. Among these, 13 associations involved lipid (n=7) or atherosclerosis (n=6) phenotypes. We tested each association for validation in MDCS using directly measured protein levels. At Bonferroni-adjusted significance thresholds, levels of apolipoprotein E isoforms were associated with hyperlipidemia, and circulating C-type lectin domain family 1 member B and platelet-derived growth factor receptor-β predicted subclinical atherosclerosis. Odds ratios for carotid atherosclerosis were 1.31 (95% CI, 1.08-1.58; P=0.006) per 1-SD increment in C-type lectin domain family 1 member B and 0.79 (0.66-0.94; P=0.008) per 1-SD increment in platelet-derived growth factor receptor-β. CONCLUSIONS: We demonstrate a biomarker discovery paradigm to identify candidate biomarkers of cardiovascular and other diseases
    corecore