66 research outputs found

    Enhancing protective microglial activities with a dual function TREM2 antibody to the stalk region

    Get PDF
    Triggering receptor expressed on myeloid cells 2 (TREM2) is essential for the transition of homeostatic microglia to a disease‐associated microglial state. To enhance TREM2 activity, we sought to selectively increase the full‐length protein on the cell surface via reducing its proteolytic shedding by A Disintegrin And Metalloproteinase (i.e., α‐secretase) 10/17. We screened a panel of monoclonal antibodies against TREM2, with the aim to selectively compete for α‐secretase‐mediated shedding. Monoclonal antibody 4D9, which has a stalk region epitope close to the cleavage site, demonstrated dual mechanisms of action by stabilizing TREM2 on the cell surface and reducing its shedding, and concomitantly activating phospho‐SYK signaling. 4D9 stimulated survival of macrophages and increased microglial uptake of myelin debris and amyloid β‐peptide in vitro. In vivo target engagement was demonstrated in cerebrospinal fluid, where nearly all oluble TREM2 was 4D9‐bound. Moreover, in a mouse model for Alzheimer's disease‐related pathology, 4D9 reduced amyloidogenesis, enhanced microglial TREM2 expression, and reduced a homeostatic marker, suggesting a protective function by driving microglia toward a disease‐associated state

    How effective is tetracaine 4% gel, before a peripherally inserted central catheter, in reducing procedural pain in infants: a randomized double-blind placebo controlled trial [ISRCTN75884221]

    Get PDF
    BACKGROUND: Procedural pain relief is sub-optimal in infants, especially small and vulnerable ones. Tetracaine gel 4% (Ametop(®), Smith-Nephew) provides pain relief in children and larger infants, but its efficacy in smaller infants and for peripherally inserted central catheters (PICC) remains uncertain. The objective of this trial was to assess the safety and efficacy of tetracaine gel on the pain response of very low birth weight (VLBW) infants during insertion of a PICC. METHODS: Medically stable infants greater than or equal to 24 weeks gestation, requiring a non-urgent PICC, were included. Following randomization and double blinding, 1.1 g of tetracaine or placebo was applied to the skin for 30 minutes. The PICC was inserted according to a standard protocol. Pain was assessed using the Premature Infant Pain Profile (PIPP). A 3-point change in the pain score was considered clinically significant, leading to a sample size of 54 infants, with 90% statistical power. Local skin reactions and immediate adverse cardiorespiratory events were noted. The primary outcome, PIPP score at 1 minute, was analysed using an independent Student's t-test. RESULTS: Fifty-four infants were included, 27 +/- 2 weeks gestation, 916 +/- 292 grams and 6.5 +/- 3.2 days of age. Baseline characteristics were similar between groups. The mean PIPP score in the first minute was 10.88 in the treatment group as compared to 11.74 in the placebo group (difference 0.86, 95% CI -1.86, 3.58). Median duration of crying in non-intubated infants was 181 seconds in the tetracaine group compared to 68 seconds in the placebo group (difference -78, 95% CI -539, 117). Local skin erythema was observed transiently in 4 infants (3 in the treatment and 1 in the placebo group). No serious harms were observed. CONCLUSION: Tetracaine 4% when applied for 30 minutes was not beneficial in decreasing procedural pain associated with a PICC in very small infants

    How effective is tetracaine 4% gel, before a venipuncture, in reducing procedural pain in infants: a randomized double-blind placebo controlled trial

    Get PDF
    BACKGROUND: Procedural pain relief is sub-optimal in neonates. Topical tetracaine provides pain relief in children. Evidence of its efficacy and safety in neonates is limited. The objective of this study was to assess the efficacy and safety of topical tetracaine on the pain response of neonates during a venipuncture. METHODS: Medically stable infants greater than or equal to 24 weeks gestation, requiring a venipuncture, were included. Following randomization and double blinding, 1.1 g of tetracaine or placebo was applied to the skin for 30 minutes. Participants received oral sucrose if they met local eligibility criteria. The venipuncture was performed according to a standard protocol. A medium effect size in the pain score (corresponding to about 2 point difference in the PIPP score) was considered clinically significant, leading to a sample size of 142 infants, with 80% statistical power. Local skin reactions and immediate adverse cardiorespiratory events were noted. The primary outcome, PIPP score at 1 minute, was analysed using an independent Student's t-test. RESULTS: One hundred and forty two infants were included, 33 +/- 4 weeks gestation, 2100 +/- 900 grams and 6 +/- 3 days of age. There was almost no difference in PIPP scores at 1 minute between groups (mean difference -0.09; 95% confidence interval [CI]: -1.68 to 1.50; P = . 91). Similarly, there were no differences in PIPP scores during the 2(nd), 3(rd )and 4th minute. Duration of cry did not differ between the groups (median difference, 0; 95% CI, -3 to 0; P = . 84). The majority of infants in both groups received sucrose 24%. Sucrose had a significant effect on the PIPP score, as assessed by an ANOVA model (p = 0.0026). Local skin erythema was observed transiently in 11 infants (7 in the tetracaine and 4 in the placebo group). No serious side effect was observed. CONCLUSION: Tetracaine did not significantly decrease procedural pain in infants undergoing a venipuncture, when used in combination with routine sucrose administration

    Long-term expansion, genomic stability and in vivo safety of adult human pancreas organoids

    Get PDF
    Abstract: Background: Pancreatic organoid systems have recently been described for the in vitro culture of pancreatic ductal cells from mouse and human. Mouse pancreatic organoids exhibit unlimited expansion potential, while previously reported human pancreas organoid (hPO) cultures do not expand efficiently long-term in a chemically defined, serum-free medium. We sought to generate a 3D culture system for long-term expansion of human pancreas ductal cells as hPOs to serve as the basis for studies of human pancreas ductal epithelium, exocrine pancreatic diseases and the development of a genomically stable replacement cell therapy for diabetes mellitus. Results: Our chemically defined, serum-free, human pancreas organoid culture medium supports the generation and expansion of hPOs with high efficiency from both fresh and cryopreserved primary tissue. hPOs can be expanded from a single cell, enabling their genetic manipulation and generation of clonal cultures. hPOs expanded for months in vitro maintain their ductal morphology, biomarker expression and chromosomal integrity. Xenografts of hPOs survive long-term in vivo when transplanted into the pancreas of immunodeficient mice. Notably, mouse orthotopic transplants show no signs of tumorigenicity. Crucially, our medium also supports the establishment and expansion of hPOs in a chemically defined, modifiable and scalable, biomimetic hydrogel. Conclusions: hPOs can be expanded long-term, from both fresh and cryopreserved human pancreas tissue in a chemically defined, serum-free medium with no detectable tumorigenicity. hPOs can be clonally expanded, genetically manipulated and are amenable to culture in a chemically defined hydrogel. hPOs therefore represent an abundant source of pancreas ductal cells that retain the characteristics of the tissue-of-origin, which opens up avenues for modelling diseases of the ductal epithelium and increasing understanding of human pancreas exocrine biology as well as for potentially producing insulin-secreting cells for the treatment of diabetes

    Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency

    Get PDF
    Steroid-resistant nephrotic syndrome (SRNS) causes 15% of chronic kidney disease cases. A mutation in 1 of over 40 monogenic genes can be detected in approximately 30% of individuals with SRNS whose symptoms manifest before 25 years of age. However, in many patients, the genetic etiology remains unknown. Here, we have performed whole exome sequencing to identify recessive causes of SRNS. In 7 families with SRNS and facultative ichthyosis, adrenal insufficiency, immunodeficiency, and neurological defects, we identified 9 different recessive mutations in SGPL1, which encodes sphingosine-1-phosphate (S1P) lyase. All mutations resulted in reduced or absent SGPL1 protein and/or enzyme activity. Overexpression of cDNA representing SGPL1 mutations resulted in subcellular mislocalization of SGPL1. Furthermore, expression of WT human SGPL1 rescued growth of SGPL1-deficient dpl1. yeast strains, whereas expression of disease-associated variants did not. Immunofluorescence revealed SGPL1 expression in mouse podocytes and mesangial cells. Knockdown of Sgpl1 in rat mesangial cells inhibited cell migration, which was partially rescued by VPC23109, an S1P receptor antagonist. In Drosophila, Sply mutants, which lack SGPL1, displayed a phenotype reminiscent of nephrotic syndrome in nephrocytes. WT Sply, but not the disease-associated variants, rescued this phenotype. Together, these results indicate that SGPL1 mutations cause a syndromic form of SRNS

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
    corecore