1,002 research outputs found

    Efficient Global Sensitivity Analysis of Structural Vibration for a Nuclear Reactor System Subject to Nonstationary Loading

    Get PDF
    The structures associated with the nuclear steam supply system (NSSS) of a pressurized water reactor (PWR) include significant epistemic and aleatory uncertainties in the physical parameters, while also being subject to various non-stationary stochastic loading conditions over the life of a nuclear power plant. To understand the influence of these uncertainties on nuclear reactor systems, sensitivity analysis must be performed. This work evaluates computational design of experiment strategies, which execute a nuclear reactor equipment system finite element model to train and verify Gaussian Process (GP) surrogate models. The surrogate models are then used to perform both global and local sensitivity analyses. The significance of the sensitivity analysis for efficient modeling and simulation of nuclear reactor stochastic dynamics is discussed

    Use of rhodizonic acid for rapid detection of root border cell trapping of lead and reversal of trapping with DNase

    Get PDF
    Premise of the StudyLead (Pb) is a contaminant whose removal from soil remains a challenge. In a previous study, border cells released from root tips were found to trap Pb, alter its chemistry, and prevent root uptake. Rhodizonic acid (RA) is a forensic tool used to reveal gunshot residue, and also to detect Pb within plant tissues. Here we report preliminary observations to assess the potential application of RA in exploring the dynamics of Pb accumulation at the root tip surface. Methods and ResultsCorn root tips were immersed in Pb solution, stained with RA, and observed microscopically. Pb trapping by border cells was evident within minutes. The role of extracellular DNA was revealed when addition of nucleases resulted in dispersal of RA-stained Pb particles. ConclusionsRA is an efficient tool to monitor Pb-root interactions. Trapping by border cells may control Pb levels and chemistry at the root tip surface. Understanding how plants influence Pb distribution in soil may facilitate its remediation.U.S. National Science Foundation [PBI-1457092]Open Access JournalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Correlated Isotope Fractionation and Formation of Purple FUN Inclusions

    Get PDF
    Allende coarse-grained inclusions characterized by a distinct purple color and high spinel contents (≤ 50 vol.%) exhibit a higher frequency of FUN isotopic anomalies (≈20%) than the general CAI population (≤6%). We used the ion microprobe to measure Mg, Si, Cr and Fe isotopic compositions of three Purple Spinel-rich Inclusions (PSI = ψ) which are petrographically similar to Type B CAl to investigate: 1) variations in isotopic fractionation within inclusions, including secondary phases; 2) correlated isotopic fractionation; and 3) excess ^(26)Mg

    Tropical Dominating Sets in Vertex-Coloured Graphs

    Full text link
    Given a vertex-coloured graph, a dominating set is said to be tropical if every colour of the graph appears at least once in the set. Here, we study minimum tropical dominating sets from structural and algorithmic points of view. First, we prove that the tropical dominating set problem is NP-complete even when restricted to a simple path. Then, we establish upper bounds related to various parameters of the graph such as minimum degree and number of edges. We also give upper bounds for random graphs. Last, we give approximability and inapproximability results for general and restricted classes of graphs, and establish a FPT algorithm for interval graphs.Comment: 19 pages, 4 figure

    Optimized energy calculation in lattice systems with long-range interactions

    Full text link
    We discuss an efficient approach to the calculation of the internal energy in numerical simulations of spin systems with long-range interactions. Although, since the introduction of the Luijten-Bl\"ote algorithm, Monte Carlo simulations of these systems no longer pose a fundamental problem, the energy calculation is still an O(N^2) problem for systems of size N. We show how this can be reduced to an O(N logN) problem, with a break-even point that is already reached for very small systems. This allows the study of a variety of, until now hardly accessible, physical aspects of these systems. In particular, we combine the optimized energy calculation with histogram interpolation methods to investigate the specific heat of the Ising model and the first-order regime of the three-state Potts model with long-range interactions.Comment: 10 pages, including 8 EPS figures. To appear in Phys. Rev. E. Also available as PDF file at http://www.cond-mat.physik.uni-mainz.de/~luijten/erikpubs.htm

    Teleworking practice in small and medium-sized firms: Management style and worker autonomy

    Get PDF
    In an empirical study of teleworking practices amongst small and medium-sized enterprises (SMEs) in West London, organisational factors such as management attitudes, worker autonomy and employment flexibility were found to be more critical than technological provision in facilitating successful implementation. Consequently, we argue that telework in most SMEs appears as a marginal activity performed mainly by managers and specialist mobile workers
    corecore