129 research outputs found

    Are lower levels of red blood cell transfusion more cost-effective than liberal levels after cardiac surgery? Findings from the TITRe2 randomised controlled trial.

    Get PDF
    OBJECTIVE: To assess the incremental cost and cost-effectiveness of a restrictive versus a liberal red blood cell transfusion threshold after cardiac surgery. DESIGN: A within-trial cost-effectiveness analysis with a 3-month time horizon, based on a multicentre superiority randomised controlled trial from the perspective of the National Health Service (NHS) and personal social services in the UK. SETTING: 17 specialist cardiac surgery centres in UK NHS hospitals. PARTICIPANTS: 2003 patients aged >16 years undergoing non-emergency cardiac surgery with a postoperative haemoglobin of <9 g/dL. INTERVENTIONS: Restrictive (transfuse if haemoglobin <7.5 g/dL) or liberal (transfuse if haemoglobin <9 g/dL) threshold during hospitalisation after surgery. MAIN OUTCOME MEASURES: Health-related quality of life measured using the EQ-5D-3L to calculate quality-adjusted life years (QALYs). RESULTS: The total costs from surgery up to 3 months were £17 945 and £18 127 in the restrictive and liberal groups (mean difference is -£182, 95% CI -£1108 to £744). The cost difference was largely attributable to the difference in the cost of red blood cells. Mean QALYs to 3 months were 0.18 in both groups (restrictive minus liberal difference is 0.0004, 95% CI -0.0037 to 0.0045). The point estimate for the base-case cost-effectiveness analysis suggested that the restrictive group was slightly more effective and slightly less costly than the liberal group and, therefore, cost-effective. However, there is great uncertainty around these results partly due to the negligible differences in QALYs gained. CONCLUSIONS: We conclude that there is no clear difference in the cost-effectiveness of restrictive and liberal thresholds for red blood cell transfusion after cardiac surgery. TRIAL REGISTRATION NUMBER: ISRCTN70923932; Results

    Indicators of river system hydromorphological character and dynamics: understanding current conditions and guiding sustainable river management

    Get PDF
    The work leading to this paper received funding from the EU’s FP7 programme under Grant Agreement No. 282656 (REFORM). The Indicators were developed within the context of REFORM deliverable D2.1, therefore all partners involved in this deliverable contributed to some extent to their discussion and development

    Age and Diet Affect Gene Expression Profile in Canine Skeletal Muscle

    Get PDF
    We evaluated gene transcription in canine skeletal muscle (biceps femoris) using microarray analysis to identify effects of age and diet on gene expression. Twelve female beagles were used (six 1-year olds and six 12-year olds) and they were fed one of two experimental diets for 12 months. One diet contained primarily plant-based protein sources (PPB), whereas the second diet contained primarily animal-based protein sources (APB). Affymetrix GeneChip Canine Genome Arrays were used to hybridize extracted RNA. Age had the greatest effect on gene transcription (262 differentially expressed genes), whereas the effect of diet was relatively small (22 differentially expressed genes). Effects of age (regardless of diet) were most notable on genes related to metabolism, cell cycle and cell development, and transcription function. All these genes were predominantly down-regulated in geriatric dogs. Age-affected genes that were differentially expressed on only one of two diets were primarily noted in the PPB diet group (144/165 genes). Again, genes related to cell cycle (22/35) and metabolism (15/19) had predominantly decreased transcription in geriatric dogs, but 6/8 genes related to muscle development had increased expression. Effects of diet on muscle gene expression were mostly noted in geriatric dogs, but no consistent patterns in transcription were observed. The insight these data provide into gene expression profiles of canine skeletal muscle as affected by age, could serve as a foundation for future research pertaining to age-related muscle diseases

    Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation

    Get PDF
    Background: The neuroinflammatory response following traumatic brain injury (TBI) is known to be a key secondary injury factor that can drive ongoing neuronal injury. Despite this, treatments that have targeted aspects of the inflammatory pathway have not shown significant efficacy in clinical trials. Main body: We suggest that this may be because classical inflammation only represents part of the story, with activation of neurogenic inflammation potentially one of the key initiating inflammatory events following TBI. Indeed, evidence suggests that the transient receptor potential cation channels (TRP channels), TRPV1 and TRPA1, are polymodal receptors that are activated by a variety of stimuli associated with TBI, including mechanical shear stress, leading to the release of neuropeptides such as substance P (SP). SP augments many aspects of the classical inflammatory response via activation of microglia and astrocytes, degranulation of mast cells, and promoting leukocyte migration. Furthermore, SP may initiate the earliest changes seen in blood-brain barrier (BBB) permeability, namely the increased transcellular transport of plasma proteins via activation of caveolae. This is in line with reports that alterations in transcellular transport are seen first following TBI, prior to decreases in expression of tight-junction proteins such as claudin-5 and occludin. Indeed, the receptor for SP, the tachykinin NK1 receptor, is found in caveolae and its activation following TBI may allow influx of albumin and other plasma proteins which directly augment the inflammatory response by activating astrocytes and microglia. Conclusions: As such, the neurogenic inflammatory response can exacerbate classical inflammation via a positive feedback loop, with classical inflammatory mediators such as bradykinin and prostaglandins then further stimulating TRP receptors. Accordingly, complete inhibition of neuroinflammation following TBI may require the inhibition of both classical and neurogenic inflammatory pathways.Frances Corrigan, Kimberley A. Mander, Anna V. Leonard and Robert Vin

    Mitochondrial function as a determinant of life span

    Get PDF
    Average human life expectancy has progressively increased over many decades largely due to improvements in nutrition, vaccination, antimicrobial agents, and effective treatment/prevention of cardiovascular disease, cancer, etc. Maximal life span, in contrast, has changed very little. Caloric restriction (CR) increases maximal life span in many species, in concert with improvements in mitochondrial function. These effects have yet to be demonstrated in humans, and the duration and level of CR required to extend life span in animals is not realistic in humans. Physical activity (voluntary exercise) continues to hold much promise for increasing healthy life expectancy in humans, but remains to show any impact to increase maximal life span. However, longevity in Caenorhabditis elegans is related to activity levels, possibly through maintenance of mitochondrial function throughout the life span. In humans, we reported a progressive decline in muscle mitochondrial DNA abundance and protein synthesis with age. Other investigators also noted age-related declines in muscle mitochondrial function, which are related to peak oxygen uptake. Long-term aerobic exercise largely prevented age-related declines in mitochondrial DNA abundance and function in humans and may increase spontaneous activity levels in mice. Notwithstanding, the impact of aerobic exercise and activity levels on maximal life span is uncertain. It is proposed that age-related declines in mitochondrial content and function not only affect physical function, but also play a major role in regulation of life span. Regular aerobic exercise and prevention of adiposity by healthy diet may increase healthy life expectancy and prolong life span through beneficial effects at the level of the mitochondrion

    Molecular techniques for pathogen identification and fungus detection in the environment

    Get PDF
    Many species of fungi can cause disease in plants, animals and humans. Accurate and robust detection and quantification of fungi is essential for diagnosis, modeling and surveillance. Also direct detection of fungi enables a deeper understanding of natural microbial communities, particularly as a great many fungi are difficult or impossible to cultivate. In the last decade, effective amplification platforms, probe development and various quantitative PCR technologies have revolutionized research on fungal detection and identification. Examples of the latest technology in fungal detection and differentiation are discussed here

    The effects of implementing a point-of-care electronic template to prompt routine anxiety and depression screening in patients consulting for osteoarthritis (the Primary Care Osteoarthritis Trial): A cluster randomised trial in primary care

    Get PDF
    Background This study aimed to evaluate whether prompting general practitioners (GPs) to routinely assess and manage anxiety and depression in patients consulting with osteoarthritis (OA) improves pain outcomes. Methods and findings We conducted a cluster randomised controlled trial involving 45 English general practices. In intervention practices, patients aged ≥45 y consulting with OA received point-of-care anxiety and depression screening by the GP, prompted by an automated electronic template comprising five questions (a two-item Patient Health Questionnaire–2 for depression, a two-item Generalized Anxiety Disorder–2 questionnaire for anxiety, and a question about current pain intensity [0–10 numerical rating scale]). The template signposted GPs to follow National Institute for Health and Care Excellence clinical guidelines for anxiety, depression, and OA and was supported by a brief training package. The template in control practices prompted GPs to ask the pain intensity question only. The primary outcome was patient-reported current pain intensity post-consultation and at 3-, 6-, and 12-mo follow-up. Secondary outcomes included pain-related disability, anxiety, depression, and general health. During the trial period, 7,279 patients aged ≥45 y consulted with a relevant OA-related code, and 4,240 patients were deemed potentially eligible by participating GPs. Templates were completed for 2,042 patients (1,339 [31.6%] in the control arm and 703 [23.1%] in the intervention arm). Of these 2,042 patients, 1,412 returned questionnaires (501 [71.3%] from 20 intervention practices, 911 [68.0%] from 24 control practices). Follow-up rates were similar in both arms, totalling 1,093 (77.4%) at 3 mo, 1,064 (75.4%) at 6 mo, and 1,017 (72.0%) at 12 mo. For the primary endpoint, multilevel modelling yielded significantly higher average pain intensity across follow-up to 12 mo in the intervention group than the control group (adjusted mean difference 0.31; 95% CI 0.04, 0.59). Secondary outcomes were consistent with the primary outcome measure in reflecting better outcomes as a whole for the control group than the intervention group. Anxiety and depression scores did not reduce following the intervention. The main limitations of this study are two potential sources of bias: an imbalance in cluster size (mean practice size 7,397 [intervention] versus 5,850 [control]) and a difference in the proportion of patients for whom the GP deactivated the template (33.6% [intervention] versus 27.8% [control]). Conclusions In this study, we observed no beneficial effect on pain outcomes of prompting GPs to routinely screen for and manage comorbid anxiety and depression in patients presenting with symptoms due to OA, with those in the intervention group reporting statistically significantly higher average pain scores over the four follow-up time points than those in the control group. Trial registration ISRCTN registry ISRCTN4072198
    • …
    corecore