17 research outputs found

    Evaluation of anti-insulin receptor antibodies as potential novel therapies for human insulin receptoropathy using cell culture models.

    Get PDF
    AIMS/HYPOTHESIS: Bi-allelic loss-of-function mutations in the INSR gene (encoding the insulin receptor [INSR]) commonly cause extreme insulin resistance and early mortality. Therapeutic options are limited, but anti-INSR antibodies have been shown to activate two mutant receptors, S323L and F382V. This study evaluates four well-characterised murine anti-INSR monoclonal antibodies recognising distinct epitopes (83-7, 83-14, 18-44, 18-146) as surrogate agonists for potential targeted treatment of severe insulin resistance arising from insulin receptoropathies. METHODS: Ten naturally occurring mutant human INSRs with defects affecting different aspects of receptor function were modelled and assessed for response to insulin and anti-INSR antibodies. A novel 3T3-L1 adipocyte model of insulin receptoropathy was generated, permitting conditional knockdown of endogenous mouse Insr by lentiviral expression of species-specific short hairpin (sh)RNAs with simultaneous expression of human mutant INSR transgenes. RESULTS: All expressed mutant INSR bound to all antibodies tested. Eight mutants showed antibody-induced autophosphorylation, while co-treatment with antibody and insulin increased maximal phosphorylation compared with insulin alone. After knockdown of mouse Insr and expression of mutant INSR in 3T3-L1 adipocytes, two antibodies (83-7 and 83-14) activated signalling via protein kinase B (Akt) preferentially over signalling via extracellular signal-regulated kinase 1/2 (ERK1/2) for seven mutants. These antibodies stimulated glucose uptake via P193L, S323L, F382V and D707A mutant INSRs, with antibody response greater than insulin response for D707A. CONCLUSIONS/INTERPRETATION: Anti-INSR monoclonal antibodies can activate selected naturally occurring mutant human insulin receptors, bringing closer the prospect of novel therapy for severe insulin resistance caused by recessive mutations

    Insulin at 100 years – is rebalancing its action key to fighting obesity-related disease?

    Get PDF
    One hundred years ago, insulin was purified and administered to people with diabetes to lower blood glucose, suppress ketogenesis and save lives. A century later, insulin resistance (IR) lies at the heart of the obesity-related disease pandemic. Multiple observations attest that IR syndrome is an amalgamation of gain and loss of insulin action, suggesting that IR is a misnomer. This misapprehension is reinforced by shortcomings in common model systems and is particularly pronounced for the tissue growth disorders associated with IR. It is necessary to move away from conceptualisation of IR as a pure state of impaired insulin action and to appreciate that, in the long term, insulin can harm as well as cure. The mixed state of gain and loss of insulin action, and its relationship to perturbed insulin-like growth factor (IGF) action, should be interrogated more fully in models recapitulating human disease. Only then may the potential of rebalancing insulin action, rather than simply increasing global insulin signalling, finally be appreciated

    Acute knockdown of the insulin receptor or its substrates Irs1 and 2 in 3T3-L1 adipocytes suppresses adiponectin production.

    Get PDF
    Loss of function of the insulin receptor (INSR) in humans produces severe insulin resistance. Unlike "common" insulin resistance, this is associated with elevated plasma levels of the insulin-sensitising, adipose-derived protein adiponectin. The underlying mechanism for this paradox is unclear, and it is at odds with the acute stimulation of adiponectin secretion reported on insulin treatment of cultured adipocytes. Given recent evidence for ligand-independent actions of the INSR, we used a lentiviral system to knock down Insr or its substrates Irs1 and Irs2 conditionally in 3T3-L1 murine preadipocytes/adipocytes to assess whether acute loss of their expression has different consequences to withdrawal of insulin. Efficient knockdown of either Insr or Irs1/2 was achieved by conditional shRNA expression, severely attenuating insulin-stimulated AKT phosphorylation and glucose uptake. Dual knockdown of Irs1 and Irs2 but not Insr in preadipocytes impaired differentiation to adipocytes. Acute knockdown of Insr or both Irs1 and Irs2 in adipocytes increased Adipoq mRNA expression but reduced adiponectin secretion, assessed by immunoassay. Knockdown sustained for 14 days also reduced immunoassay-detected adiponectin secretion, and moreover induced delipidation of the cells. These findings argue against a distinct effect of Insr deficiency to promote adiponectin secretion as the explanation for paradoxical insulin receptoropathy-related hyperadiponectinaemia.Adiponectin DELFIA assays were undertaken by the United Kingdom National Institute for Health Research (NIHR) Clinical Biochemistry Assay Laboratory. This work was supported by the Wellcome Trust (grant number WT098498), the Medical Research Council (MRC-MC-UU- 12012/5), and the NIHR Cambridge Biomedical Research Centre.This is the final version of the article. It first appeared from Nature Publishing Group via https://doi.org/10.1038/srep2110

    Anti-Insulin Receptor Antibodies Improve Hyperglycemia in a Mouse Model of Human Insulin Receptoropathy.

    Get PDF
    Loss-of-function mutations in both alleles of the human insulin receptor gene (INSR) cause extreme insulin resistance (IR) and usually death in childhood, with few effective therapeutic options. Bivalent antireceptor antibodies can elicit insulin-like signaling by mutant INSR in cultured cells, but whether this translates into meaningful metabolic benefits in vivo, wherein the dynamics of insulin signaling and receptor recycling are more complex, is unknown. To address this, we adopted a strategy to model human insulin receptoropathy in mice, using Cre recombinase delivered by adeno-associated virus to knockout endogenous hepatic Insr acutely in floxed Insr mice (liver insulin receptor knockout [L-IRKO] + GFP), before adenovirus-mediated add back of wild-type (WT) or mutant human INSR Two murine anti-INSR monoclonal antibodies, previously shown to be surrogate agonists for mutant INSR, were then tested by intraperitoneal injections. As expected, L-IRKO + GFP mice showed glucose intolerance and severe hyperinsulinemia. This was fully corrected by add back of WT but not with either D734A or S350L mutant INSR. Antibody injection improved glucose tolerance in D734A INSR-expressing mice and reduced hyperinsulinemia in both S350L and D734A INSR-expressing animals. It did not cause hypoglycemia in WT INSR-expressing mice. Antibody treatment also downregulated both WT and mutant INSR protein, attenuating its beneficial metabolic effects. Anti-INSR antibodies thus improve IR in an acute model of insulin receptoropathy, but these findings imply a narrow therapeutic window determined by competing effects of antibodies to stimulate receptors and induce their downregulation

    Mesenchyme-derived IGF2 is a major paracrine regulator of pancreatic growth and function

    Get PDF
    The genetic mechanisms that determine the size of the adult pancreas are poorly understood. Imprinted genes, which are expressed in a parent-of-origin-specific manner, are known to have important roles in development, growth and metabolism. However, our knowledge regarding their roles in the control of pancreatic growth and function remains limited. Here we show that many imprinted genes are highly expressed in pancreatic mesenchyme-derived cells and explore the role of the paternally-expressed insulin-like growth factor 2 (Igf2) gene in mesenchymal and epithelial pancreatic lineages using a newly developed conditional Igf2 mouse model. Mesenchyme-specific Igf2 deletion results in acinar and beta-cell hypoplasia, postnatal whole-body growth restriction and maternal glucose intolerance during pregnancy, suggesting that the mesenchyme is a developmental reservoir of IGF2 used for paracrine signalling. The unique actions of mesenchymal IGF2 are demonstrated by the absence of any discernible growth or functional phenotypes upon Igf2 deletion in the developing pancreatic epithelium. Additionally, increased IGF2 levels specifically in the mesenchyme, through conditional Igf2 loss-of-imprinting or Igf2r deletion, leads to pancreatic acinar overgrowth. Furthermore, ex-vivo exposure of primary acinar cells to exogenous IGF2 activates AKT, a key signalling node, and increases their number and amylase production. Based on these findings, we propose that mesenchymal Igf2, and perhaps other imprinted genes, are key developmental regulators of adult pancreas size and function

    Genomic epidemiology of SARS-CoV-2 in a UK university identifies dynamics of transmission

    Get PDF
    AbstractUnderstanding SARS-CoV-2 transmission in higher education settings is important to limit spread between students, and into at-risk populations. In this study, we sequenced 482 SARS-CoV-2 isolates from the University of Cambridge from 5 October to 6 December 2020. We perform a detailed phylogenetic comparison with 972 isolates from the surrounding community, complemented with epidemiological and contact tracing data, to determine transmission dynamics. We observe limited viral introductions into the university; the majority of student cases were linked to a single genetic cluster, likely following social gatherings at a venue outside the university. We identify considerable onward transmission associated with student accommodation and courses; this was effectively contained using local infection control measures and following a national lockdown. Transmission clusters were largely segregated within the university or the community. Our study highlights key determinants of SARS-CoV-2 transmission and effective interventions in a higher education setting that will inform public health policy during pandemics.</jats:p

    Differential Activation of Insulin Receptor Substrates 1 and 2 by Insulin-Like Growth Factor-Activated Insulin Receptors▿

    No full text
    The insulin-like growth factors (insulin-like growth factor I [IGF-I] and IGF-II) exert important effects on growth, development, and differentiation through the IGF-I receptor (IGF-IR) transmembrane tyrosine kinase. The insulin receptor (IR) is structurally related to the IGF-IR, and at high concentrations, the IGFs can also activate the IR, in spite of their generally low affinity for the latter. Two mechanisms that facilitate cross talk between the IGF ligands and the IR at physiological concentrations have been described. The first of these is the existence of an alternatively spliced IR variant that exhibits high affinity for IGF-II as well as for insulin. A second phenomenon is the ability of hybrid receptors comprised of IGF-IR and IR hemireceptors to bind IGFs, but not insulin. To date, however, direct activation of an IR holoreceptor by IGF-I at physiological levels has not been demonstrated. We have now found that IGF-I can function through both splice variants of the IR, in spite of low affinity, to specifically activate IRS-2 to levels similar to those seen with equivalent concentrations of insulin or IGF-II. The specific activation of IRS-2 by IGF-I through the IR does not result in activation of the extracellular signal-regulated kinase pathway but does induce delayed low-level activation of the phosphatidylinositol 3-kinase pathway and biological effects such as enhanced cell viability and protection from apoptosis. These findings suggest that IGF-I can function directly through the IR and that the observed effects of IGF-I on insulin sensitivity may be the result of direct facilitation of insulin action by IGF-I costimulation of the IR in insulin target tissues

    A combined free-flow electrophoresis and DIGE approach to identify proteins regulated by butyrate in HT29 cells

    No full text
    Many biologically active agents exert a pleiotropic response in cells and tissues. This presents challenges in descriptive and comparative analysis of the proteome in response to these agents. Although free-flow electrophoresis has been applied in a number of proteomic studies as a protein separation technique, the combination of free-flow electrophoresis and DIGE has not yet been investigated for comparative proteomic analysis. In this study, we have compared the effects of butyrate on HT29 colorectal cancer cells with a particular focus on apoptosis and describe the utility of a novel approach combining free-flow electrophoresis with DIGE to identify differentially expressed proteins. We verify the results obtained by the combined free-flow electrophoresis and DIGE approach with Western blot analysis of selected proteins. We also report for the first time the regulation of a number of proteins by butyrate in HT29 colorectal cells including peptidyl-prolyl cis-trans isomerase A (cyclophilin A) and profilin-1.

    Challenges and solutions for diabetes early career researchers in the COVID-19 recovery - perspectives of the Diabetes UK Innovators in Diabetes

    Get PDF
    The COVID-19 pandemic has put diabetes at the forefront of conversation. The prevalence of type 2 diabetes in the United Kingdom is high1 and has links to adverse COVID-19 outcomes.2 Research investigating the links between these two public health issues are moving at pace. However, the pandemic has seen early career researchers (ECRs) in diabetes face professional and personal challenges that have the potential to slow down or derail bourgeoning careers. These challenges are not unique to ECRs working in the diabetes field—and they compound a challenging decade that included the fallout from an economic crisis and uncertainties arising from a protracted Brexit. In May 2021, 15 ECRs gathered online as part of the Diabetes UK annual Innovators in Diabetes (IDia) training programme. A discussion on the career challenges faced and possible solutions to facilitate a healthy future for diabetes ECRs was initiated and facilitated by senior leaders in diabetes research. This letter summarises the themes from that discussion

    Claudin-1 Expression Is Elevated in Colorectal Cancer Precursor Lesions Harboring the BRAF V600E Mutation

    Get PDF
    BACKGROUND: Sessile serrated adenomas/polyps (SSA/P) are now recognised precursors of colorectal cancer (CRC) including cancers harbouring somatic BRAF (V600E) mutations. While the morphological diagnostic criteria of SSA/P have been established, distinguishing between small/early SSA/P and microvesicular hyperplastic polyps (MVHP) is challenging and may not be possible in routine practice. METHODS: Gene expression profiling of MVHP (n=5, all BRAF V600E wild-type) and SSA/P (n=5, all BRAF V600E mutant) samples was performed. Quantitative reverse transcription–polymerase chain reaction (qRT-PCR) and immunohistochemical analysis was performed to verify the expression of claudin 1 (CLDN1) in MVHP and SSA/P. RESULTS: Gene expression profiling studies conducted between MVHP and SSA/P identified CLDN1 as the most statistically significant differentially expressed gene (p<0.05). Validation with qRT-PCR confirmed an up-regulation of CLDN1 in BRAF V600E mutant polyps regardless of polyp type (p<0.0005). Immunohistochemical analysis of CLDN1 expression in BRAF V600E mutant SSA/Ps (n=53) and MVHPs (n=111) and BRAF wild-type MVHPs (n=58), demonstrated a strong correlation between CLDN1 expression and the BRAF V600E mutation in both SSA/P and MVHP samples when compared to wild-type polyps (p<0.0001). CONCLUSION: This study demonstrates an up regulation of CLDN1 protein in serrated colorectal polyps including MVHP harbouring the BRAF V600E mutation. Our results demonstrated an apparent heterogeneity on the molecular level within the MVHP group and suggest that MVHP with somatic BRAF V600E mutation and up-regulated expression of CLDN1 are closely related to SSA/P and may in fact represent a continuous spectrum of the same neoplastic process within the serrated pathway of colorectal carcinogenesis
    corecore