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Abstract

Loss-of-function mutations in both alleles of the human insulin receptor gene (INSR) cause extreme insulin resistance (IR) 

and usually death in childhood, with few effective therapeutic options.  Bivalent anti-receptor antibodies can elicit insulin-

like signaling by mutant INSR in cultured cells, but whether this translates into meaningful metabolic benefits in vivo, where 

dynamics of insulin signaling and receptor recycling are more complex, is unknown.  To address this we adopted a strategy 

to model human insulin receptoropathy in mice, using Cre recombinase delivered by adeno-associated virus to knock out 

endogenous hepatic Insr acutely in floxed Insr mice (L-IRKO+GFP), before adenovirus-mediated ‘add-back’ of wild-type 

(WT) or mutant human INSR.  Two murine anti-INSR monoclonal antibodies, previously shown to be surrogate agonists for 

mutant INSR, were then tested by intraperitoneal injections. As expected, L-IRKO+GFP mice showed glucose intolerance 

and severe hyperinsulinemia, and this was fully corrected by add-back of WT but neither D734A nor S350L mutant INSR. 

Antibody injection improved glucose tolerance in D734A INSR-expressing mice and reduced hyperinsulinemia in both S350L 

and D734A INSR-expressing animals, and did not cause hypoglycemia in WT INSR-expressing mice. Antibody treatment 

also downregulated both wild-type and mutant INSR protein, attenuating its beneficial metabolic effects. Anti-INSR 

antibodies thus improve IR in an acute model of insulin receptoropathy, but these findings imply a narrow therapeutic window 

determined by competing effects of antibodies to stimulate receptors and induce their downregulation.  
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Introduction

Insulin exerts metabolic and growth promoting effects that are essential for life via a homodimeric plasma membrane 

receptor tyrosine kinase.  Insulin binding to extracellular sites induces alterations in receptor structure that promote trans 

autophosphorylation of tyrosine residues on intracellular beta subunits.  This in turn leads to recruitment and phosphorylation 

of insulin receptor substrate (IRS) proteins, and thence activation of a signalling network, critically including PI3K/AKT and 

RAS/MAPK pathways(1).

Attenuated glucose-lowering by insulin in vivo is referred to as insulin resistance (IR), and is a core feature of the 

metabolic syndrome in humans.  IR is closely associated with obesity, type 2 diabetes, an abnormal blood lipid profile that 

promotes atherosclerosis, fatty liver and reduced fertility, but its molecular and cellular basis is not fully elucidated(2).   

Several severe forms of IR are known where the precise cause is established, however.  The most extreme of these are caused 

by bi-allelic insulin receptor (INSR) mutations, and are clinically described as Donohue or Rabson–Mendenhall syndromes 

(OMIM#246200 or #262190). Death is usual within the first 3 years in Donohue syndrome, while in Rabson Mendenhall 

syndrome mortality in the second or third decades is common despite use of insulin sensitising drugs, high dose insulin and 

experimental therapy with recombinant human insulin-like growth factor 1 (IGF1)(3) or leptin(4). There is a thus major unmet 

need for novel approaches to circumvent impaired function of mutant receptors. Some INSR mutations impair receptor 

processing and thus cell surface expression, however many mutant INSR are well expressed at the cell surface, but exhibit 

impaired insulin binding and/or impaired signal transduction(5).  This affords the opportunity to activate the mutant receptors 

using surrogate ligands, and observations of the genetic spectrum of receptoropathy suggest that even modest activation is 

likely to elicit meaningful metabolic effects(2).

It was demonstrated in the 1980s that crosslinking of insulin receptor homodimers by bivalent antibodies could elicit 

signalling responses(5), and in the early 1990s the principle that insulin receptors harbouring disease-causing mutations could 

also be partly activated by antibodies was provided for two mutations, one in a cell culture model and the other in solubilised 

form(7, 8).  With therapeutic humanised monoclonal antibodies now well established as treatments both for cancer and non-

cancer indications(9), interest in biological therapies targeting the INSR has recently rekindled.  Inhibitory INSR antibodies 

are now in Phase 1 human trials(10) while stimulatory antibodies have been shown to ameliorate diabetes in rodents(11–13) 

and primates(14). Given the high clinical need in recessive insulin receptoropathy, we previously assessed the effect of 

monoclonal anti-INSR antibodies(15–19) on a series of disease-causing mutant INSRs in cell culture models, corroborating 

and extending prior findings by demonstrating an action of antibodies against a panel of mutant receptors(20).  
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Whether the stimulation of mutant receptors by anti-receptor antibodies that is observed biochemically after acute 

exposure of cells in culture will be sustained and metabolically beneficial in vivo has not yet been addressed.  A specific 

concern relates to the documented effect of naturally occurring anti-INSR autoantibodies, which are partial agonists when 

tested acutely on cellular models, to downregulate INSR signalling when present at high concentrations in vivo, inducing 

acquired severe IR, known as “type B” IR(21).  Such an effect has not been assessed in preclinical testing of anti-INSR 

antibodies reported to date(11–14), but is a critical concern in efforts to develop safe, efficacious biological therapies targeting 

the INSR.

To address these issues we have now generated a novel model of human insulin receptoropathy restricted to mouse 

liver, based on adenoviral overexpression of human wild-type or mutant INSR in the liver after cre-mediated knockout of 

endogenous murine Insr.  Using this model we assessed the effect of two anti-human INSR monoclonal antibodies previous 

tested in cell culture on metabolic endpoints and receptor expression.

Materials and Methods

Mice

All mouse experiments were approved under the UK Home Office Animals (Scientific Procedures) Act 1986 following ethical 

review by the University of Cambridge Animal Welfare and Ethical Review Board. InsrloxP/loxP mice were described 

previously(22), as was use of adeno-associated virus to deliver Cre to generate liver insulin receptor knock out (L-IRKO) 

mice(23). InsrloxP/loxP mice were purchased from The Jackson Laboratories (Bar Harbor, ME, USA). Mice were fed regular 

laboratory SAFE105 chow diet (Safe Diets, Augy, France) throughout the study. Male mice were injected via the tail-vein at 

8 weeks of age with 1011 copies per mouse of adeno-associated virus serotype 8 containing a hybrid promoter based on the 

thyroid hormone-binding globulin (TBG) promoter and macroglobulin/bikunin enhancer.  This permitted liver-specific 

expression of iCre or eGFP to generate L-IRKO or liver wild-type (L-WT) mice, respectively. At 10 weeks of age, mice were 

injected via the tail-vein with 5x109 infectious units (IFU) per mouse of adenovirus serotype 5 containing the liver albumin 

promoter driving liver-specific expression of either c-terminal myc-tagged human insulin receptor WT, S350L, D734A 

mutants, or eGFP (L-IRKO+GFP and L-WT). Plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) 

levels were measured before and after AAV administration (week 9), and after AdV administration (week 11) in a pilot study. 

Only ALT levels in the L-IRKO+WT mice at week 11 were elevated, at 3-fold higher than the upper limit of normal for 

C57BL/6J mice, indicating mild liver inflammation that would be clinically insignificant (Supplementary Figure 1).   
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For antibody studies, mice were treated twice over one week with 10mg/kg antibody via intraperitoneal injection, with the 

first dose given the day after AdV was administered. The antibodies used have been extensively studied and are available 

from various vendors. Antibodies were highly purified from mycoplasma-free hybridoma culture supernatants as a paid 

service by BioServUK, and were diluted in PBS prior to administration. Blood glucose 60 minutes after administration of 

antibody to  ad-lib fed animals, revealed no change in blood glucose concentration. Experiments were performed a week after 

adenovirus injection. Mice were euthanised by cervical dislocation at the conclusion of the oral glucose tolerance test and 

tissues were harvested and snap-frozen immediately in liquid nitrogen before storage at -80oC until further processing. 

Bodyweights of mice were measured throughout the study and no significant change was observed among different genotypes 

or treatment groups (Supplementary Figure 2).

Metabolic measurements

For oral glucose tolerance tests (OGTT), mice were fasted for 5 h prior to oral gavage of glucose at 2g/kg body weight. Blood 

glucose measurements were made using a blood glucose analyser (AlphaTRAK) at 0, 15, 30, 60, 90, 120 minutes. For plasma 

insulin analysis, tail blood was collected at 0 and 15 min into glass micro-haematocrit capillary tubes with sodium heparin 

(Hirshmann-Laborgeräte, Germany). Insulin concentrations were determined by a sandwich immunoassay providing an 

electrochemiluminescent readout (Meso Scale Discovery, Maryland, USA). 

Liver protein extraction and Western blotting

Liver tissues were homogenised in RIPA buffer (Thermo Fisher Scientific, MA, USA) containing protease and phosphatase 

inhibitors (Roche, Penzberg, Germany) using Matrix D ceramic beads and a FastPrep-24TM benchtop homogeniser (MP 

Biomedicals, CA, USA). Lysates were cleared of insoluble debris by centrifugation prior to determination of protein 

concentration by BCA assay (BioRad, CA, USA). Lysates were electrophoresed through either 4-12% NuPAGE or 8% E-

PAGE gels (Thermo Fisher Scientific, MA, USA) and transferred to nitrocellulose by iBlot 2 dry blotting system (Thermo 

Fisher Scientific, MA, USA). The following antibodies were used for immunoblotting at a dilution of 1:1000: INSR (3025), 

Myc-tag (2276), Beta-actin (4967) from Cell Signaling Technology (MA, USA), and at a dilution of 1:2000: GFP (ab290) 

from Abcam (Cambridge, UK). Horseradish peroxidase (HRP)-conjugated secondary antibodies and Immobilon Western 

Chemiluminescent HRP substrate (Millipore, Massachusetts, USA) were used to detect protein-antibody complexes, and grey-

scale 16-bit TIFs captured with an ImageQuant LAS4000 camera system (GE Healthcare Lifesciences, Massachusetts, USA). 

Pixel density of grey-scale 16-bit TIFs was determined in ImageJ 1.52b (NIH, USA). The rectangle tool was used to select 

lanes and the line tool to enclose the peak of interest and subtract background. The magic-wand tool was used to select the 

peak area and obtain the raw densitometry value. Normalised values for INSR were scaled to the mean expression of INSR 
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in L-WT tissues and Myc-tagged INSR values were scaled to the mean expression of INSR-myc in control antibody treated 

L-IRKO+WT animals.

Liver mRNA isolation and quantitative PCR

Total RNA was isolated from liver tissues using the Direct-zol RNA extraction kit from Zymo Research (Irvine, CA, USA). 

Complementary DNA was reverse-transcribed using Moloney murine leukemia virus reverse transcriptase (Promega, 

Wisconsin, USA). Relative expression of genes of interest were quantified by real-time PCR using TaqManTM gene expression 

assays (Mm02619580_g1 ACTB, Mm01211877_m1 Mm Insr, Hs00961560_m1 Hs INSR) and the QuantStudioTM 7 Flex 

Real-Time PCR system (Thermo Fisher Scientific, MA, USA) and results analysed by the comparative Ct method. 

Validation experiments were performed both to confirm species specificity of TaqManTM gene expression assays and that 

their relative amplification efficiencies permitted analysis by the comparative Ct method.

Statistical analysis 

Mice were randomly assigned to viral injection schedules and antibody treatment groups. Investigators were blind to the 

assignment at the time of administering treatments and performing experiments. All data presented are the mean ± S.D with 

the exception of the OGTT histograms which are the mean ± S.E.M. Statistical analysis were performed using 

GraphPad Prism 8 for macOS version 8.3.0 (GraphPad Software, CA, USA). Protein abundance, mRNA expression, 

fasting blood glucose and insulin, and AUC (blood glucose mmol/L*120min were computed using the trapezoid rule) and 

analysed by one-way ANOVA followed by Tukey’s multiple comparisons test. Blood glucose levels during OGTT were 

analysed by two-way (repeated measures) ANOVA followed by Tukey’s multiple comparisons test. A probability level 

of 5% (p<0.05) was considered statistically significant. 

Results 

Creation of a flexible murine model of human insulin receptoropathy

We first set out to generate a “humanized” mouse model of insulin receptoropathy (Figure 1A).  This was necessary 

as the previously described anti-human INSR monoclonal antibodies to be tested (83-7 and 83-14, which bind distinct 

epitopes on the receptor -subunit) were raised in mice and do not bind rodent receptor(16).  Eight-week old InsrloxP/loxP 

mice were injected via the tail vein with an adeno-associated virus (AAV) containing Cre recombinase under control of a 

liver specific promoter (thyroid hormone-binding globulin).  This deleted endogenous hepatic Insr, generating liver insulin 

receptor knock out (L-IRKO) mice.  As described previously(23) this approach avoids the compensatory, secondary 

responses seen on 
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congenital liver Insr knockout(22).  Wild-type (WT) or mutant human INSR, or GFP alone,  were then expressed in knockout 

liver by injection via the tail vein at 10 weeks of age of adenovirus (AdV) containing transgenes under the control of the liver 

specific albumin promoter, to create a series of “add back” models of human receptoropathy, denoted here by L-IRKO+WT, 

L-IRKO+(INSR mutation) and L-IRKO+GFP respectively.  All INSR constructs included C-terminal myc-tags to aid detection 

of transgene expression.  Liver wild-type (L-WT) mice with unperturbed liver Insr expression were generated by injecting 

InsrloxP/loxP mice with AAV encoding GFP at 8-weeks of age, followed by AdV encoding GFP at 10-weeks of age, and served 

as additional controls (Figure 1A). 

Two INSR mutations, D734A and S350L, were selected for study based on prior evaluation in cell signaling 

assays(20).  Both D734A(24) and S350L(25) mutations produce receptors that are normally processed and expressed at the 

cell surface but demonstrate severely reduced insulin binding and autophosphorylation.  Indeed the INSR D734A mutation 

lies in the αCT segment of the extracellular domain of the INSR, which is a critical structural components of insulin binding 

site 1, initially identified in biochemical studies(26). Importantly, both mutant INSR have been shown to be activatable by 

anti-INSR antibodies(20, 27).

The INSR D734A mutant was used first to evaluate the “add back” approach.  Western blots of liver lysates confirmed 

efficient deletion of endogenous Insr in mice administered AAV-Cre, expression of GFP in mice administered control virus, 

and expression of myc-tagged INSR in mice administered AdV encoding human INSR transgenes (Figure 1B). Blood glucose 

concentrations following 5 h fasting were the same across all groups except L-IRKO+D734A, which demonstrated decreased 

fasting blood glucose (Figure 1C), presumably due to the action of increased insulin concentration on unaffected peripheral 

tissues (Figure 1D). L-IRKO+GFP mice demonstrated marked increase of fasting blood insulin concentration compared to L-

WT mice (p<0.001), and this was rescued upon expression of human WT INSR in the liver (p<0.001) (L-IRKO+WT) (Figure 

1D). Likewise, mice expressing the INSR D734A mutant demonstrated significant elevation of blood insulin concentration 

compared to L-WT and L-IRKO+WT (both p<0.001) (Figure 1D). L-IRKO+GFP mice were more glucose intolerant than L-

WT mice (Figure 1E) with increased glucose excursion during 120min OGTT, assessed as area under the curve (Figure 1F).  

Add-back of human WT INSR but not mutant D734A INSR restored glucose tolerance (Figure 1F).  These findings confirmed 

that an “add back” model of human insulin receptoropathy was capable of discriminating clearly between WT and mutant 

INSR.

Antibody treatment down-regulates wild-type human INSR expression with minimal effect on glucose homeostasis
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The primary aim of this study was to assess whether dysfunctional, mutant INSR can be activated by anti-INSR 

antibodies.  However, such bivalent antibodies can also bind and activate WT human INSR(16), and naturally occurring 

polyclonal anti-INSR antibodies induce hypoglycaemia at low titres, and extreme insulin resistance at high titres in 

humans(21).  On the other hand, monoclonal human anti-INSR antibodies have been suggested as a therapeutic strategy in 

common forms of diabetes, without evaluation of effects on receptor expression(11–14).  Understanding the balance between 

surrogate agonism and receptor downregulation is likely to be a critical consideration in development of antibody therapeutics 

for receptoropathy.  The effects of anti-INSR antibodies were thus first assessed in mice with WT INSR added back.  Antibody 

was administered at a dose of 10mg/kg, delivered by intraperitoneal injection at 1 and 4 days after adenoviral injection, before 

metabolic evaluation 7 days after adenoviral injection (Figure 1A). Antibody dose and treatment schedule were based on 

previous studies of agonistic INSR antibodies(11–13). Control antibody-treated animals demonstrated a similar pattern of 

glucose tolerance and circulating insulin concentrations to those in initial characterization studies (Supplementary Figure 3).  

Anti-INSR antibodies caused significant (p<0.01) down-regulation of myc-tagged INSR protein expression (Figure 2A and 

B) with no change in mRNA expression of human INSR transgene (Figure 2C) amongst treatment groups, indicating that the 

decrease in myc-tagged INSR protein levels was not due to failed liver transduction with transgene. No further decrease in 

the very low level of residual endogenous Insr was seen (Figure 2D). Treatment of L-IRKO+WT mice with anti-INSR 

antibodies did not alter glucose tolerance (Figure 2E and F), but fasting blood glucose concentration was mildly decreased in 

83-14-treated mice compared to control and 83-7 treated mice (p<0.01 and p<0.05 respectively) (Figure 2G). Fasting blood 

insulin concentration was unaffected by either antibody treatment (Figure 2H).

As the anti-INSR antibodies used do not bind mouse Insr, off target metabolic effects were not anticipated.  To confirm 

this anti-INSR antibodies were administered to L-WT mice (Supplementary Figure 4).  As expected, no effect on endogenous 

liver Insr protein expression (Supplementary Figure 4A,B), mRNA expression (Supplementary Figure 4C), glucose tolerance 

(Supplementary Figure 4D,E), fasting blood glucose concentration (Supplementary Figure 4F) or fasting blood insulin 

concentration (Supplementary Figure 4G) was seen. L-IRKO+GFP mice, with severely reduced liver Insr expression 

(Supplementary Figure 4A,H,I), also showed no change in any metabolic assessment (Supplementary Figure 4J-M).  

Furthermore, insulin signaling in other tissues was unaffected by either AAV/AdV administration or antibody treatment 

(Supplementary Figure 5).

Antibody treatment improves glucose tolerance and hyperinsulinemia in receptoropathy models, but down-regulates 

INSR protein expression
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In L-IRKO+GFP mice with ‘add-back’ of INSR D734A, treatment with 83-7 and 83-14 antibodies downregulated 

myc-tagged INSR protein levels compared to control-treated animals (p<0.0001) (Figure 3 A and B). This was not 

accompanied by any change in either human INSR transgene mRNA (Figure 3C) or endogenous mouse Insr mRNA (Figure 

3D). Despite this, treatment with 83-7 and 83-14 did improve glucose tolerance (Figure 3E and F).  This was not accompanied 

by any change in fasting blood glucose concentrations (Figure 3G), however antibody 83-14 significantly (p<0.05) reduced 

fasting insulin concentrations in L-IRKO+D734A animals (Figure 3H).

In L-IRKO+GFP mice with ‘add-back’ of S350L mutant human INSR, treatment with 83-7 and 83-14 also reduced 

myc-tagged INSR protein levels (Figure 4 A and B). As in L-IRKO+WT and L-IRKO+D734A mice, this was not due to failed 

liver transduction with human INSR, as qPCR demonstrated stable human INSR transgene mRNA across all treatment 

conditions (Figure 4C) and effective deletion of endogenous mouse Insr (Figure 4D). Animals treated with 83-7 and 83-14 

showed only a trend to improved glucose tolerance (Figure 4 E and F), and neither antibody lowered fasting blood glucose 

concentrations (Figure 4G). Treatment of L-IRKO+S350L mice with anti-INSR antibody 83-7 did reduce fasting blood insulin 

concentration compared to control and 83-14-treated animals (both p<0.05), indirectly demonstrating hypoglycaemic action 

of antibody (Figure 4H).  Collectively these findings demonstrate that anti-INSR monoclonal antibodies improve glucose 

tolerance and reduce fasting hyperinsulinemia in mice expressing human INSR mutations that cause recessive insulin 

receptoropathy, but that the magnitude of the improvement seen is likely attenuated by downregulation of INSR expression.

Discussion 

Extreme congenital IR was first clinically described as Donohue Syndrome, and the less severe Rabson Mendenhall 

Syndrome (RMS), decades before the insulin receptor was identified, and thus long before the genetic cause, namely bi-allelic 

INSR mutations, was established(28, 29). Both syndromes feature extreme metabolic derangement, characterised by high blood 

glucose concentration that is unresponsive or minimally responsive to insulin therapy.  They also feature severely impaired 

linear growth and underdevelopment of insulin-responsive tissues such as skeletal muscle and adipose tissue. Less intuitively, 

marked overgrowth of other tissues and organs including skin, kidneys, liver, gonads and colonic mucosa is also seen, and may 

pose clinical challenges(2). Overgrowth is thought to be driven by compensatory elevation of blood insulin concentration, 

which can act on the trophic insulin-like growth factor 1 (IGF1) receptor, which is structurally similar to the INSR(2).

The clinical course of recessive insulin receptoropathy is bleak, with death common between infancy, at which stage 

it often occurs during viral infection, and early adolescence, when it is more likely due to complications of uncontrolled diabetes 

such as ketoacidosis or microvascular damage. Pharmacotherapy relies on case reports and case series only, and commonly 
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includes insulin-sensitising drugs such as metformin, and high dose insulin.  In the most severe cases recombinant human 

insulin-like growth factor 1 (rhIGF1) is often used, based on reports of its acute hypoglycemic effects in Donohue syndrome, 

and some evidence that it may improve longevity in recessive receptoropathy(3).  Nevertheless the lack of placebo-controlled 

studies, the likliehood of reporting bias in the exisiting case literature, and the underlying variability in the natural history of 

recessive receptoropathies are all reasons for caution.  Furthermore tissue overgrowth, for example of liver, kidneys, heart, 

skin, and ovaries, is a prominent feature of severe receptoropathy, and is most likely medated by IGF1 receptors, which can be 

stimulated by high insulin concentrations. There is thus a major unmet therapeutic need for novel insulin-mimetic agents, 

ideally with no action on the IGF1 receptor. Genetic considerations suggest that only a small degree of activation of ‘non-

functional’ receptors may be required to achieve major clinical benefits:  Donohue syndrome is caused by complete or near 

complete loss of receptor function, while Rabson Mendenhall syndrome, with a better prognosis, features around 10-20% 

receptor function.  Autosomal dominant insulin receptoropathy, which usually presents only around puberty, features no more 

than 25% receptor function, while lack of one INSR allele (50% function) has not been associated with IR.  This suggests a 

steep relationship between INSR function and prognosis between 0 and 25% receptor function.  

We previously demonstrated the ability of bivalent, specific anti-INSR antibodies to act as surrogate ligands on a 

series of mutant INSR in cell culture models(20), and now report their evaluation in vivo in a novel mouse model of human 

insulin receptoropathy.  The ‘humanised’ mouse model of insulin receptoropathy was generated by using sequential viral 

infection to knock out endogenous Insr and then to re-express human INSR.   This enabled changes in metabolic outcomes 

upon antibody treatment to be attributed to action on re-expressed human mutant INSR as the monoclonal anti-INSR antibodies 

tested do not bind rodent  Insr(16).  Use of a viral strategy made liver the most tractable organ to target, and also had the benefit 

that liver parenchyma is particularly accessible to antibody due to the fenestration of hepatic capillaries. This approach also 

avoided the compensatory responses reported in congenital liver Insr deficiency(22), while offering flexibility to study various 

mutant human INSR transgenes without generating distinct genetically modified mouse lines.  On the other hand technical 

success relies on efficient administration of viral vectors by skilled operators, and AdV vectors limit duration of transgene 

expression, constraining the time window for study. 

Encouragingly, both monoclonal anti-INSR Abs tested - 83-7 and 83-14 - did improve glucose tolerance in L-

IRKO+D734A mice, while 83-14 treatment also lowered fasting blood insulin concentration in these mice (Figure 3H). 83-7 

lowered fasting blood insulin concentration in L-IRKO+S350L mice (Figure 4H). Collectively, these observations 

demonstrate that anti-INSR antibodies can improve glucose tolerance and reduce fasting hyperinsulinemia  in mice expressing 

human INSR that cause severe disease in humans, adding to evidence that antibody-based surrogate agonism may be of 

metabolic benefit in vivo. The effects observed in this acute receptoropathy model were modest and not fully consistent 
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between mutants or antibodies, or indices of IR.  However, several factors may have adversely affected the potential for 

antibodies to ameliorate the condition.  First, overexpression of the human INSR added back may have attenuated the degree 

of IR that mutants confer compared to humans with endogenous expression of the same mutations, reducing the dynamic 

range of IR of the model.  This may explain the relatively mild IR seen with S350L at baseline (Figure 4), despite this mutation 

being found to cause RMS in several unrelated families.  While future calibration of the viral models described against mice 

with endogenous expression of mutant receptors would be of great interest, the need to study human INSR rather than mouse 

Insr makes this a challenging technical proposition.

A second potential reason why metabolic effects of antibodies were not larger has more profound implications for 

INSR surrogate agonist-based strategies for treating IR. Antibody treatment downregulated receptor expression across all 

INSR species studied, as expected from the known coupling of receptor activation to internalisation. Following internalisation 

by endocytosis receptors are trafficked through the endosomal/lysosomal pathway and either recycled to the cell surface in 

the unliganded state or degraded(30).  The mechanisms governing internalisation, trafficking, and the balance of subsequent 

recycling and degradation in response to stimulation are poorly understood, but the potential importance of this in the context 

of anti-INSR antibodies is known from studies of Type B insulin resistance(21).  This is a naturally occurring, acquired form 

of insulin receptoropathy driven by anti-INSR antibodies.  It is well known that low titres of such antibodies can produce 

clinically important hypoglycaemia, but that when antibody titres rise severe receptor desensitisation and fulminant IR occurs 

that may be life threatening(21). This harmful effect of high antibody levels will likely narrow the therapeutic window for 

agonistic anti-INSR antibodies in recessive receptoropathy unless ways of uncoupling partial agonist and receptor 

desensitising effects are devised, perhaps by selectively modulating receptor recycling and degradation rates. Interestingly, 

studies in the 1980s suggested that lysosomes may not be critical for receptor desensitsation(31), suggesting that other 

processes such as proteasomal degradation warrant study in this context.

In summary, we report a novel approach to modelling recessive human insulin receptor defects in the mouse using 

sequential virally-mediated knockout of endogenous and re-expression of human insulin receptor.  This yielded mice with 

acute IR due to two previously studied INSR mutations that have been shown in cell models to exhibit activation by anti-

INSR antibodies.   Injection of well characterised monoclonal anti-INSR antibodies improved IR in both models, however 

the magnitude of the effect is likely to have been limited by downregulation of receptor.  Our findings confirm the potential 

utility of surrogate agonist strategies for treating lethal insulin receptoropathy, but caution that receptor downregulation may 

attenuate the benefits realised unless this can concomitantly be reduced.
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Figure Legends

Figure 1. Hyperglycemia and insulin resistance due to liver insulin receptor deletion are rescued by WT but not 

mutant human INSR (A) Schematic representation of the generation of the insulin receptoropathy model. (B) Western blot 

of liver lysates from mice on completion of oral glucose tolerance test (OGTT) and probed for insulin receptor  subunit 

(INSR), MYC, GFP or -actin.  (C) Blood glucose and (D) insulin concentrations in mice after 5 h fasting. (E) Results of 

OGTT (2g/kg glucose) after 5 h fasting, L-IRKO+GFP (squares), L-IRKO+D734A (diamonds), L-IRKO+WT (upward 

triangles), L-WT (circles). (F) OGTT areas under the curve. L-WT mice = AAV-GFP/AdV-GFP (i.e. GFP control only), L-

IRKO+GFP mice = AAV-iCre/AdV-GFP (i.e. liver Insr knockout only), L-IRKO+WT = AAV-iCre/AdV-HsINSR-WT-myc 

(i.e. L-IRKO with WT INSR add back), L-IRKO+D734A = AAV-iCre/AdV-HsINSR-D734A-myc (i.e. L-IRKO with 

D734A INSR add back). Data in C, D and F are shown as mean ± SD, with statistical significance tested by one-way 

ANOVA with Tukey’s multiple comparison test. n = 5 per group, except L-IRKO+D734A (n = 4). * p<0.05, ** p<0.01, *** 

p<0.001. Data in E are mean ± SEM, with statistical significance of difference from L-IRKO+GFP tested by two-way 

repeated measures ANOVA with Tukey’s multiple comparisons test. * p<0.05, ** p<0.01.

Figure 2. Antibody treatment down-regulates wild-type human INSR expression in mouse liver with minimal effect 

on glucose homeostasis. L-IRKO + WT mice were dosed twice over one week with 10mg/kg control (n=4) or anti-INSR 

antibodies 83-7 (n=5) or 83-14 (n=5) as indicated. (A) Western blot of liver lysates from L-IRKO+WT mice at the 

completion of OGTT, probing for MYC-tagged  subunit or -actin as indicated. Quantification of (B) Myc-tagged human 

INSR protein, (C) human INSR mRNA, and (D) endogenous Insr mRNA in livers from the same experiment. mRNA was 

quantified by qPCR. (E) OGTT (2g glucose/kg) after 5 h fast in antibody treated L-IRKO+WT mice. (F) Area under blood 

glucose curves during OGTT in antibody treated L-IRKO+WT mice. (G) Blood glucose concentrations in antibody treated 

L-IRKO+WT mice after 5 h fast. (H) Insulin concentrations in antibody treated L-IRKO+WT mice after 5 h fast.  All data 

(except E) are shown as mean ± SD, with statistical significance tested by one-way ANOVA with Tukey’s multiple 

comparison test, * p<0.05, ** p<0.01. In (E) data shown are mean ± SEM. Circles = control antibody. Upward triangles = 

83-7 antibody. Downward triangles = 83-14 antibody. Lack of statistical significance was determined by two-way repeated 

measures ANOVA with Tukey’s multiple comparisons test.

Figure 3. Antibody treatment improves glucose tolerance and hyperinsulinemia in INSR D734A add-back mice, but 

down-regulates INSR protein expression. L-IRKO+D734A mice were treated twice over one week with 10mg/kg control 

(n=9) or anti-INSR 83-7 (n=10) or 83-14 (n=8) antibodies. (A) Western blot of liver lysates from L-IRKO+D734A mice at 

completion of OGTT, probed for the proteins as indicated. Quantification of (B) Myc-tagged human INSR protein, (C) 

human INSR mRNA, and (D) endogenous Insr mRNA in livers from the same experiment. mRNA was quantified by 

qPCR. (E) OGTT (2g glucose/kg) after 5 h fast in antibody treated L-IRKO+D734Amice. (F) Area under blood glucose 

curves during OGTT in antibody treated L-IRKO+D734A mice. (G) Blood glucose concentrations in antibody treated L-

IRKO+D734A mice after 5 h fast. (H) Insulin concentrations in antibody treated L-IRKO+D734A mice after 5 h fast.  All 

data (except E) 



are shown as mean ± SD, with statistical significance tested by one-way ANOVA with Tukey’s multiple comparison test. In 

(E) data shown are mean ± SEM. Circles = control antibody. Upward triangles = 83-7 antibody. Downward triangles = 83-14

antibody. Statistical significance was tested by two-way repeated measures ANOVA with Tukey’s multiple comparisons test.

* p<0.05, ** p<0.01, *** p<0.001, ****p<0.0001.

Figure 4. Antibody treatment reduces fasting hyperinsulinemia in INSR S350L add-back mice but downregulates 

INSR protein expression.  L-IRKO+S350L mice were treated twice over one week with 10mg/kg control (n=8) or anti-INSR 

83-7 (n=6) or 83-14 (n=9) antibodies. (A) Western blot of liver lysates from mice at completion of OGTT were probed for

the proteins indicated. Quantification of (B) Myc-tagged human INSR protein, (C) human INSR mRNA and (D) endogenous

Insr mRNA in livers from the same experiment. mRNA was quantified by qPCR. (E) OGTT (2g glucose/kg) after 5 h fast in

antibody treated L-IRKO+S350L mice. (F) Area under blood glucose curves during OGTT in antibody treated L-

IRKO+S350L mice. (G) Blood glucose concentrations in antibody treated L-IRKO+S350L mice after 5 h fast. (H) Insulin

concentrations in antibody treated L-IRKO+S350Lmice after 5 h fast.  All data (except E) are shown as mean ± SD, with

statistical significance tested by one-way ANOVA with Tukey’s multiple comparison test. In (E) data shown are mean ±

SEM. Circles = control antibody. Upward triangles = 83-7 antibody. Downward triangles = 83-14 antibody. Lack of statistical

significance was determined by two-way repeated measures ANOVA with Tukey’s multiple comparisons test. * p<0.05, **

p<0.01, *** p<0.001, ****p<0.0001.
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Online Appendix

Anti-Insulin receptor antibodies improve hyperglycemia in a mouse model 
of human insulin receptoropathy

Gemma V Brierley, Hannah Webber, Eerika Rasijeff, Sarah Grocott, Kenneth Siddle, Robert K Semple
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Supplementary Figure 1. Plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) 
were measured before and after virus administration. ALT levels (A - C) in the L-IRKO+WT mice at week 
11 were 3-fold higher than the reference values for C57BL/6J mice1 (dotted lines) indicating mild liver 
inflammation to a degree that would be clinically insignificant. Plasma AST levels were elevated post-AAV and 
AdV administration but fell within the reference range (dotted lines) for C57BL/6J mice1 (D - E).

Supplementary Reference:

1. Blood chemistry and hematology in 8 inbred strains of mice. MPD: Eumorphia1. Mouse Phenome Database
web resource (RRID:SCR_003212), The Jackson Laboratory, Bar Harbor, Maine USA. https://phenome.jax.org
[Accessed 27/5/20]).
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Supplementary Figure 2. Bodyweights of mice were measured throughout the study. (A) Body weight data 
(mean ± SD) for animals reported in Figure 1. Body weight significantly differed (p<0.05) at week 10 between 
L-IRKO+GFP and L-WT animals only (Two-way ANOVA, Tukey’s multiple comparison test). This time point
is two weeks post knockout of the Insr in the liver of the L-IRKO+GFP animals. Animals were randomly assigned
into groups prior to virus administration. Animals exist as L-IRKO mice from 8 weeks of age and become human
WT or mutant INSR expressing mice between weeks 10 and 11 of age. No difference in body weight was observed
between WT or mutant INSR expressing mice treated with control antibody (B). Mice (n = 5-10 per condition, as
detailed in the manuscript) all lost some weight over the last week of the protocol, most likely attributable to the
increase in procedures over that week (despite extensive handling and habituation).
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Supplementary Figure 3. Control antibody has no metabolic effect in mice with acute liver insulin 
receptoropathy (A - D) L-WT mice, (E – H) L-IRKO+GFP mice, (I – L) L-IRKO+WT mice, (M – P) L-
IRKO+D734A mice.  Results of OGTT (2g/kg glucose) after 5 h fasting (A, E, I, M) and OGTT areas under the 
curve (B, F, J, N). (C, G, K, O) Blood glucose and (D, H, L, P) insulin concentrations in mice after 5 h fasting. 
L-WT mice = AAV-GFP/AdV-GFP (i.e. GFP control only), L-IRKO+GFP mice = AAV-iCre/AdV-GFP (i.e.
liver Insr knockout only), L-IRKO + WT = AAV-iCre/AdV-HsINSR-WT-myc (i.e. L-IRKO with WT INSR add
back), L-IRKO + D734A = AAV-iCre/AdV-HsINSR-D734A-myc (i.e. L-IRKO with D734A INSR add back).
Data in A, E, I, M are shown are means ± SEM, with statistical significance of difference from L-IRKO+GFP
tested by two-way repeated measures ANOVA with Sidak’s multiple comparisons test. All other data are shown
as mean ± SD, with statistical significance determined by unpaired two-tailed t-test.
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Supplementary Figure 4. Antibody treatment has no effect in mice not expressing human INSR. L-WT (B - 
G) and L-IRKO+GFP (H- M) mice were treated twice over the course of a week with 10mg/kg control or anti-
INSR antibodies 83-7 or 83-14 as indicated. (A) Representative Western blot of lysates from livers harvested from
L-WT and L-IRKO+GFP mice at the completion of oral glucose tolerance test (OGTT) and probed for specific
proteins as indicated.  INSR protein expression (B, H) and Insr gene expression (C, I) in antibody treated L-WT
and L-IRKO+GFP mice, respectively. Glucose tolerance test 2g/kg administered by oral gavage after 5 h fast, in
antibody treated L-WT (D) and L-IRKO+GFP (J). Data are mean ± SEM. Circles = control antibody. Upward
triangles = 83-7 antibody. Downward triangles = 83-14 antibody. Lack of statistical significance determined by
two-way repeated measures ANOVA with Tukey’s multiple comparisons test. Cumulative measurement of blood
glucose during 120 min OGTT in antibody treated L-WT (E) and L-IRKO+GFP (K) mice. Blood glucose
concentrations in antibody treated L-WT (F) and L-IRKO+GFP (L) mice after 5 h fast. Insulin concentrations in
antibody treated L-WT (G) and L-IRKO+GFP (M) mice after 5 h fast.  All data (except D and J) are mean ± SD,
lack of statistical significance was determined by one-way ANOVA with Tukey’s multiple comparison test. L-
WT n = 4 per group. L-IRKO+GFP n = 6 per group control and 83-7 treated animals and n = 7 for the 83-14 treated
group.
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Supplementary Figure 5.  Insulin receptor expression and insulin signalling is unaffected in tissues not 
targeted by AAV/AdV or antibody treatment. Western blot of lysates from liver, heart (A), skeletal muscle 
(gastrocnemius/soleus) and inguinal fat (B) demonstrate selective Insr knockout in the liver followed by selective 
hepatic add back of human INSR was achieved using liver-specific promoters and AAV/AdV serotypes that 
exhibit efficient liver transduction. The non-targeted tissues still express wild type murine Insr and the treatment 
antibodies are selective for the human INSR (added back in the liver). Insulin signalling in non-hepatic tissues 
and organs is intact and unaffected by AAV/AdV or antibody treatment, and reflects the prevailing plasma insulin 
concentrations.
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