193 research outputs found

    Geometric Mechanics of Curved Crease Origami

    Full text link
    Folding a sheet of paper along a curve can lead to structures seen in decorative art and utilitarian packing boxes. Here we present a theory for the simplest such structure: an annular circular strip that is folded along a central circular curve to form a three-dimensional buckled structure driven by geometrical frustration. We quantify this shape in terms of the radius of the circle, the dihedral angle of the fold and the mechanical properties of the sheet of paper and the fold itself. When the sheet is isometrically deformed everywhere except along the fold itself, stiff folds result in creases with constant curvature and oscillatory torsion. However, relatively softer folds inherit the broken symmetry of the buckled shape with oscillatory curvature and torsion. Our asymptotic analysis of the isometrically deformed state is corroborated by numerical simulations which allow us to generalize our analysis to study multiply folded structures

    Parallelized Incomplete Poisson Preconditioner in Cloth Simulation

    Get PDF
    Efficient cloth simulation is an important problem for interactive applications that involve virtual humans, such as computer games. A common aspect of many methods that have been developed to simulate cloth is a linear system of equations, which is commonly solved using conjugate gradient or multi-grid approaches. In this paper, we introduce to the computer gaming community a recently proposed preconditioner, the incomplete Poisson preconditioner, for conjugate gradient solvers. We show that the parallelized incomplete Poisson preconditioner (PIPP) performs as well as the current state-of-the-art preconditioners, while being much more amenable to standard thread-level parallelism. We demonstrate our results on an 8-core Apple* Mac* Pro and a 32-core code name Emerald Ridge system

    Ramified rectilinear polygons: coordinatization by dendrons

    Full text link
    Simple rectilinear polygons (i.e. rectilinear polygons without holes or cutpoints) can be regarded as finite rectangular cell complexes coordinatized by two finite dendrons. The intrinsic l1l_1-metric is thus inherited from the product of the two finite dendrons via an isometric embedding. The rectangular cell complexes that share this same embedding property are called ramified rectilinear polygons. The links of vertices in these cell complexes may be arbitrary bipartite graphs, in contrast to simple rectilinear polygons where the links of points are either 4-cycles or paths of length at most 3. Ramified rectilinear polygons are particular instances of rectangular complexes obtained from cube-free median graphs, or equivalently simply connected rectangular complexes with triangle-free links. The underlying graphs of finite ramified rectilinear polygons can be recognized among graphs in linear time by a Lexicographic Breadth-First-Search. Whereas the symmetry of a simple rectilinear polygon is very restricted (with automorphism group being a subgroup of the dihedral group D4D_4), ramified rectilinear polygons are universal: every finite group is the automorphism group of some ramified rectilinear polygon.Comment: 27 pages, 6 figure

    Automorphisms of graphs of cyclic splittings of free groups

    Full text link
    We prove that any isometry of the graph of cyclic splittings of a finitely generated free group FNF_N of rank N3N\ge 3 is induced by an outer automorphism of FNF_N. The same statement also applies to the graphs of maximally-cyclic splittings, and of very small splittings.Comment: 22 pages, 5 figures. Small modifications. To appear in Geometriae Dedicat

    Adaptive tearing and cracking of thin sheets

    Full text link
    This paper presents a method for adaptive fracture propagation in thin sheets. A high-quality triangle mesh is dynamically restructured to adaptively maintain detail wherever it is required by the simulation. These requirements include refining where cracks are likely to either start or advance. Refinement ensures that the stress distribution around the crack tip is well resolved, which is vital for creating highly detailed, realistic crack paths. The dynamic meshing framework allows subsequent coarsening once areas are no longer likely to produce cracking. This coarsening allows efficient simulation by reducing the total number of active nodes and by preventing the formation of thin slivers around the crack path. A local reprojection scheme and a substepping fracture process help to ensure stability and prevent a loss of plasticity during remeshing. By including bending and stretching plasticity models, the method is able to simulate a large range of materials with very different fracture behaviors. Copyright © ACM

    Abelian subgroups of Garside groups

    Full text link
    In this paper, we show that for every abelian subgroup HH of a Garside group, some conjugate g1Hgg^{-1}Hg consists of ultra summit elements and the centralizer of HH is a finite index subgroup of the normalizer of HH. Combining with the results on translation numbers in Garside groups, we obtain an easy proof of the algebraic flat torus theorem for Garside groups and solve several algorithmic problems concerning abelian subgroups of Garside groups.Comment: This article replaces our earlier preprint "Stable super summit sets in Garside groups", arXiv:math.GT/060258

    Effective-Range Expansion of the Neutron-Deuteron Scattering Studied by a Quark-Model Nonlocal Gaussian Potential

    Full text link
    The S-wave effective range parameters of the neutron-deuteron (nd) scattering are derived in the Faddeev formalism, using a nonlocal Gaussian potential based on the quark-model baryon-baryon interaction fss2. The spin-doublet low-energy eigenphase shift is sufficiently attractive to reproduce predictions by the AV18 plus Urbana three-nucleon force, yielding the observed value of the doublet scattering length and the correct differential cross sections below the deuteron breakup threshold. This conclusion is consistent with the previous result for the triton binding energy, which is nearly reproduced by fss2 without reinforcing it with the three-nucleon force.Comment: 21 pages, 6 figures and 6 tables, submitted to Prog. Theor. Phy

    Intermedial Relationships of Radio Features with Denis Mitchell’s and Philip Donnellan’s Early Television Documentaries

    Get PDF
    Writing of the closure in early 1965 of the Radio Features Department, Asa Briggs identifies one of the reasons for the controversial decision as ‘the incursion of television, which was developing its own features.’ ‘[Laurence] Gilliam and his closest colleagues believed in the unique merits of “pure radio”. The screen seemed a barrier’ (The History of Broadcasting in the United Kingdom, Vol. 5, p. 348). Rather than the screen being ‘a barrier’ for them, a number of the creators of the emerging television documentary were from the late 1950s onwards able to transfer and transform distinctive techniques of ‘pure radio’ into highly effective visual forms. Two key figures were the producers of ‘poetic’ documentaries Denis Mitchell and Philip Donnellan, who employed layered voices, imaginative deployments of music and effects, and allusive juxtapositions of sound and image, to develop an alternative (although always marginal) tradition to the supposedly objective approaches of current affairs and, later, verité filmmakers. And a dozen years after the dismemberment of the Features Department, Donnellan paid tribute to it in his glorious but little-seen film Pure Radio (BBC1, 3 November 1977). Taking important early films by Mitchell and Donnellan as case studies, this paper explores the impact of radio features on television documentaries in the 1950s and early 1960s, and assesses the extent to which the screen in its intermedial relationships with ‘pure radio’ was a barrier or, in the work of certain creators, an augmentation
    corecore