33 research outputs found

    Anodically polarized nickel electrodes in DMSO or DMF solutions of pseudohalide ions: IR spectroelectrochemical studies

    Get PDF
    A novel subtractively normalized interfacial Fourier transform infrared spectroscopic (SNIFTIRS) investigation of anodically polarized nickel electrodes in pseudohalide-containing DMF or DMSO solutions (i.e. OCNā», SCNā», SeCNā»), in supporting electrolyte, tetrabutylammonium perchlorate (TBAP), is presented. In general, the data showed that nickel demonstrated irreversible anodic dissolution in all solutions studied at very high values of the applied potential, > +500 mV (AgCl/Ag). The predominant speciation of nickel in these systems was as complex ions consisting of NiĀ²āŗ ion complexed to pseudohalide ions and solvent molecules. Insoluble films and dissolved COā‚‚ were also detected, though mostly in the Ni/OCNā» systems studied. Ni(II)/pseudohalide complex ion species detected were modeled using solutions containing NiĀ²āŗ ion mixed with pseudohalide ion in different mole ratios. In general, the Ni/OCNā» electrochemical system behaved differently relative to those of Ni/SCNā» and Ni/SeCNā» due to the difference in colors observed in cell solutions after SNIFTIRS experiments which was mirrored in the model solutions. Ni(II)-cyanate species had a different, coordination geometry and gave a characteristic bright blue color due possibly to Ni(NCO)ā‚„Ā²ā» ion while Ni(II) thiocyanate and selenocyanate complex ion species had octahedral coordination geometries containing solvent and one coordinated pseudohalide ion and formed greeny yellow solutions

    A combined SNIFTIRS and XANES study of electrically polarised copper electrodes in DMSO and DMF solutions of cyanate (NCOā»), thiocyanate (NCSā») and selenocyanate (NCSeā») ions

    Get PDF
    A SNIFTIRS (subtractively normalized interfacial Fourier transform infrared spectroscopy) and X-ray absorption spectroscopy (XAS) study of electrically polarized copper electrodes in six polar aprotic solvent-based systems is presented. In the systems investigated, i.e. dimethyl formamide (DMF) and dimethyl sulfoxide (DMSO) solutions containing pseudohalide species of cyanate (NCOā»), thiocyanate (NCSā») and selenocyanate (NCSeā») codissolved with tetrabutylammonium perchlorate (TBAP), Cu was found to dissolve over a wide range of potentials to produce the corresponding Cu(I) pseudohalide and/or Cu(II) pseudohalide complex ion species. Insoluble deposited films were also observed at higher anodic applied potentials, thought to be CuSCN in the Cu/NCSā»/DMSO or DMF systems, and solid K(SeCN)ā‚ƒ in the Cu/NCSeā»/DMSO or DMF systems respectively. The presence of the Cu(II) and/or Cu(I) oxidation states in complexes formed by polarization in Cu/pseudohalide ion systems in DMSO was clearly proven using XAS of cell solutions sampled after SNIFTIRS/electrical polarization experiments. In addition, Fourier transform infrared (FTIR) and X-ray absorption near edge spectroscopy (XANES) data obtained from model solutions prepared from mixing Cu(I) and/or Cu(II) salts with the respective pseudohalide ions in DMF and DMSO confirmed the speciation observed in the electrochemical experiments

    Low-Dimensional Physics of Organic-Inorganic Multilayers

    No full text
    This thesis demonstrates the rich low-dimensional physics associated with the class of organic-inorganic hybrid materials based on atomic layers of a metal oxide separated by organic spacer molecules. Hybrid materials based on tungsten oxide and also transition metal tungstates (with manganese, iron, cobalt, nickel and copper) were synthesised and characterised using a variety of techniques. The materials in question represent one example of the huge variety of systems classed as 'organic-inorganic hybrids' and have the potential to combine the high-electron mobility of the metal oxide layers with the propensity for self-assembly of the organic layers. The crystal structures of the compounds were investigated using powder X-ray diffraction and electron diffraction, and compared with structural information obtained using IR, Raman, and extended X-ray absorption fine structure (EXAFS) spectroscopies. This data confirmed the presence of a 2- dimensional layered structure. The electronic properties of the hybrids were studied using optical spectroscopy and confirmed via ab initio calculations. The band gaps of the tungsten oxide hybrids were found to be independent of interlayer spacing, and in all cases were larger than that observed in the three dimensional WO3 'parent' material. For the transition metal tungstate hybrids there appeared to be significant interactions between the organic amines and the transition metal ions within the inorganic layers. The magnetic properties of the hybrids incorporating transition metal ions were also studied in detail. Many of these metal tungstate hybrids display magnetic transitions at low temperatures indicating a crossover from 2-dimensional to 3-dimensional behaviour. This illustrates the importance of the low-dimensional nature of the inorganic layers in these hybrid materials and thus their potential in nano-structural applications

    Magnetic properties of electroless nickel-phosphorus coated multi-walled carbon nanotubes.

    Get PDF
    Nickel-phosphorus (EN) deposited multi-walled carbon nanotubes (MWCNTs) were prepared using an electroless platingtechnique. The D.C and A.C magnetic behavior of the composites showed that pre-acid treatment of the MWCNTs prior toelectroless deposition greatly enhanced the magnetic susceptibility at 5 K producing a composite with antiferromagneticcorrelations and a superparamagnetic transition at 65.5 K. Raman scattering analysis suggests that there is no directinteraction of the nickel-phosphorus deposit and the MWCNTs

    An X-ray absorption spectroscopy investigation of the coordination environment of electrogenerated Ni(ii)-pseudohalide complexes arising from the anodic polarization of Ni electrodes in DMSO solutions of NCOā» , NCSā» and NCSeā» ions

    Get PDF
    X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) were used to provide direct information in solution on the coordination state of electrogenerated products from anodically polarized nickel electrodes in pseudohalide-ion-containing dimethyl sulfoxide (DMSO) solvent (i.e. NCXā», X = O, S, Se) in the presence of a supporting electrolyte of tetrabutylammonium perchlorate (TBAP). Electrogenerated solutions and model solutions representative of the chemical speciation in electrolyzed systems (prepared by mixing Ni(II) and pseudohalide ion solutions in DMSO), were also examined. In general for Ni(II) interacting with NCSā» and NCSeā», the complex ion generated appears to be 6-coordinate [Ni(NCX)(DMSO)5]āŗ, while EXAFS/XANES data of the Ni/cyanate system suggest an average coordination number of 5, which in reality is due to the electrogenerated solution containing a mixture of 4 coordinate (tetrahedral) [Ni(NCO)4]Ā²ā» and octahedral [Ni(DMSO)6]Ā²āŗ species. These observations of the octahedral geometry for the Ni(II)/thiocyanate and Ni(II)/selenocyanate systems and 5-coordinate geometry in the Ni(II)/cyanate systems (being electrogenerated products of anodic polarisation of Ni in the DMSO-supported pseudohalide ion electrolytes) agree with the differences in colour observed between samples. EXAFS/XANES measurements combined with IR spectroelectrochemical analyses of solutions provide a versatile way of analyzing these electrochemical systems without the need for isolating compounds from the electrolyte

    Understanding the selective etching of electrodeposited ZnO nanorods

    No full text
    ZnO nanotubes were prepared by selective dissolution of electrodeposited nanorods. The effect of solution pH, rod morphology, and chloride ion concentration on the dissolution mechanism was studied. The selective etching was rationalized in terms of the surface energy of the different ZnO crystal faces and reactant diffusion. The nanorod diameter and chloride concentration are the most influential parameters on the dissolution mechanism because they control homogeneous dissolution or selective etching of the (110) and (002) surfaces. Bulk solution pH only has an effect on the rate of dissolution. By accurate control of the dissolution process, the nanomorphology can be tailored, and the formation of rods with a thin diameter (10-20 nm), cavity, or ultra-thin-walled tubes (2-5 nm) can be achieved

    XPS and NEXAFS study of fluorine modified TiO2 nano-ovoids reveals dependence of Ti3+ surface population on the modifying agent

    Get PDF
    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (http://creativecommons.org/licenses/by/3.0/)Crystalline titanium dioxide was synthesised under mild conditions by the thermal degradation of peroxotitanic acid in the presence of a number of fluoride-containing surface modifying agents (NH4F, NH4BF4, NH4PF6, NBu4F, NBu4BF4, NBu4PF6). The resulting materials were characterised by PXRD, SEM, HRTEM, XPS and NEXAFS. Particle phase, size, and surface area were noticeably affected by the choice of surface modifying agent. Both the cation and anion comprising the modifying agent affect the surface Ti3+ population of the materials, with two apparent trends observed: Fāˆ’ > BF4āˆ’ > PF6āˆ’ and NBu4+ > NH4+. All materials displayed evidence of fluorine doping on their surfaces, although no evidence of bulk doping was observed

    Global analysis of in vivo Foxa2-binding sites in mouse adult liver using massively parallel sequencing

    Get PDF
    Foxa2 (HNF3Ī²) is a one of three, closely related transcription factors that are critical to the development and function of the mouse liver. We have used chromatin immunoprecipitation and massively parallel Illumina 1G sequencing (ChIPā€“Seq) to create a genome-wide profile of in vivo Foxa2-binding sites in the adult liver. More than 65% of the āˆ¼11.5 k genomic sites associated with Foxa2 binding, mapped to extended gene regions of annotated genes, while more than 30% of intragenic sites were located within first introns. 20.5% of all sites were further than 50 kb from any annotated gene, suggesting an association with novel gene regions. QPCR analysis demonstrated a strong positive correlation between peak height and fold enrichment for Foxa2-binding sites. We measured the relationship between Foxa2 and liver gene expression by overlapping Foxa2-binding sites with a SAGE transcriptome profile, and found that 43.5% of genes expressed in the liver were also associated with Foxa2 binding. We also identified potential Foxa2-interacting transcription factors whose motifs were enriched near Foxa2-binding sites. Our comprehensive results for in vivo Foxa2-binding sites in the mouse liver will contribute to resolving transcriptional regulatory networks that are important for adult liver function
    corecore