372 research outputs found

    User needs elicitation via analytic hierarchy process (AHP). A case study on a Computed Tomography (CT) scanner

    Get PDF
    Background: The rigorous elicitation of user needs is a crucial step for both medical device design and purchasing. However, user needs elicitation is often based on qualitative methods whose findings can be difficult to integrate into medical decision-making. This paper describes the application of AHP to elicit user needs for a new CT scanner for use in a public hospital. Methods: AHP was used to design a hierarchy of 12 needs for a new CT scanner, grouped into 4 homogenous categories, and to prepare a paper questionnaire to investigate the relative priorities of these. The questionnaire was completed by 5 senior clinicians working in a variety of clinical specialisations and departments in the same Italian public hospital. Results: Although safety and performance were considered the most important issues, user needs changed according to clinical scenario. For elective surgery, the five most important needs were: spatial resolution, processing software, radiation dose, patient monitoring, and contrast medium. For emergency, the top five most important needs were: patient monitoring, radiation dose, contrast medium control, speed run, spatial resolution. Conclusions: AHP effectively supported user need elicitation, helping to develop an analytic and intelligible framework of decision-making. User needs varied according to working scenario (elective versus emergency medicine) more than clinical specialization. This method should be considered by practitioners involved in decisions about new medical technology, whether that be during device design or before deciding whether to allocate budgets for new medical devices according to clinical functions or according to hospital department

    Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet.

    Get PDF
    Quantum spin liquids (QSLs) are topological states of matter exhibiting remarkable properties such as the capacity to protect quantum information from decoherence. Whereas their featureless ground states have precluded their straightforward experimental identification, excited states are more revealing and particularly interesting owing to the emergence of fundamentally new excitations such as Majorana fermions. Ideal probes of these excitations are inelastic neutron scattering experiments. These we report here for a ruthenium-based material, α-RuCl3, continuing a major search (so far concentrated on iridium materials) for realizations of the celebrated Kitaev honeycomb topological QSL. Our measurements confirm the requisite strong spin-orbit coupling and low-temperature magnetic order matching predictions proximate to the QSL. We find stacking faults, inherent to the highly two-dimensional nature of the material, resolve an outstanding puzzle. Crucially, dynamical response measurements above interlayer energy scales are naturally accounted for in terms of deconfinement physics expected for QSLs. Comparing these with recent dynamical calculations involving gauge flux excitations and Majorana fermions of the pure Kitaev model, we propose the excitation spectrum of α-RuCl3 as a prime candidate for fractionalized Kitaev physics.Research using ORNL’s HFIR and SNS facilities was sponsored by the US Department of Energy, Office of Science, Basic Energy Sciences (BES), Scientific User Facilities Division. A part of the synthesis and the bulk characterization performed at ORNL was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division (C.A.B. and J.-Q.Y.). The work at University of Tennessee was funded in part by the Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant GBMF4416 (D.G.M. and L.L.). The work at Dresden was in part supported by DFG grant SFB 1143 (J.K. and R.M.), and by a fellowship within the Postdoc-Program of the German Academic Exchange Service (DAAD) (J.K.). D.L.K. is supported by EPSRC Grant No. EP/M007928/1. The collaboration as a whole was supported by the Helmholtz Virtual Institute ‘New States of Matter and their Excitations’ initiative.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nmat460

    Born to yawn? Understanding yawning as a warning of the rise in cortisol levels: Randomized trial

    Get PDF
    Background: Yawning consistently poses a conundrum to the medical profession and neuroscientists. Despite neurological evidence such as parakinesia brachialis oscitans in stroke patients and thermo-irregulation in multiple sclerosis patients, there is considerable debate over the reasons for yawning with the mechanisms and hormonal pathways still not fully understood. Cortisol is implicated during yawning and may link many neurological disorders. Evidence was found in support of the Thompson cortisol hypothesis that proposes cortisol levels are elevated during yawning just as they tend to rise during stress and fatigue. Objectives: To investigate whether saliva cortisol levels rise during yawning and, therefore, support the Thompson cortisol hypothesis. Methods: We exposed 20 male and female volunteers aged between 18 and 53 years to conditions that provoked a yawning response in a randomized controlled trial. Saliva samples were collected at the start and again after the yawning response, or at the end of the stimuli presentations if the participant did not yawn. In addition, we collected electromyographic data of the jaw muscles to determine rest and yawning phases of neural activity. Yawning susceptibility scale, Hospital Anxiety and Depression Scale, General Health Questionnaire, and demographic and health details were also collected from each participant. A comprehensive data set allowed comparison between yawners and nonyawners, as well as between rest and yawning phases. Collecting electromyographic data from the yawning phase is novel, and we hope this will provide new information about neuromuscular activity related to cortisol levels. Exclusion criteria included chronic fatigue, diabetes, fibromyalgia, heart conditions, high blood pressure, hormone replacement therapy, multiple sclerosis, and stroke. We compared data between and within participants. Results: In the yawning group, there was a significant difference between saliva cortisol samples (t = -3.071, P = .01). Power and effect size were computed based on repeated-measures t tests for both the yawning and nonyawning groups. There was a medium effect size for the nonyawners group (r = .467) but low power (36%). Results were similar for the yawners group: medium effect size (r = .440) and low power (33%). Conclusions: There was significant evidence in support of the Thompson cortisol hypothesis that suggests cortisol levels are elevated during yawning. A further longitudinal study is planned to test neurological patients. We intend to devise a diagnostic tool based on changes in cortisol levels that may assist in the early diagnosis of neurological disorders based on the data collected. Trial Registration: International Standard Randomized Controlled Trial Number (ISRCTN): 61942768; http://www.controlled-trials.com/ISRCTN61942768/61942768 (Archived by WebCite at http://www.webcitation.org/6A75ZNYvr)

    Darbepoetin alfa for treating chemotherapy-induced anemia in patients with a baseline hemoglobin level < 10 g/dL versus ≥10 g/dL: an exploratory analysis from a randomized, double-blind, active-controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several studies have shown that darbepoetin alfa, an erythropoiesis-stimulating agent (ESA), can reduce transfusions and increase hemoglobin (Hb) levels in patients with chemotherapy-induced anemia (CIA). Recent safety concerns, however, have prompted changes to ESA product information. In the European Union and United States, ESA therapy initiation for CIA is now recommended at a Hb level ≤10 g/dL. The present exploratory analysis examined how ESA initiation at this Hb level may impact patient care.</p> <p>Methods</p> <p>Data from a phase 3 randomized trial were retrospectively reanalyzed. CIA patients with nonmyeloid malignancies were randomized 1:1 to 500 mcg darbepoetin alfa every three weeks (Q3W) or 2.25 mcg/kg darbepoetin alfa weekly (QW) for 15 weeks. A previously published report from this trial showed Q3W dosing was non-inferior to QW dosing for reducing transfusions from week 5 to end-of-the-treatment period (EOTP). In the present analysis, outcomes were reanalyzed by baseline Hb <10 g/dL and ≥10 g/dL. Endpoints included transfusion rates, Hb outcomes, and safety profiles.</p> <p>Results</p> <p>This study reanalyzed 351 and 354 patients who initiated ESA therapy at a baseline Hb of <10 g/dL or ≥10 g/dL, respectively. From week 5 to EOTP, the estimated Kaplan-Meier transfusion incidence (Q3W vs QW) was lower in the ≥10 g/dL baseline-Hb group (14% vs 21%) compared with the <10 g/dL baseline-Hb group (36% vs 41%). By week 5, the ≥10 g/dL baseline-Hb group, but not the <10 g/dL baseline-Hb group, achieved a mean Hb ≥11 g/dL. The Kaplan-Meier estimate of percentage of patients (Q3W vs QW) who achieved Hb ≥11 g/dL from week 1 to EOTP was 90% vs 85% in the ≥10 g/dL baseline-Hb group and 54% vs 57% in the <10 g/dL baseline-Hb group. Both baseline-Hb groups maintained mean Hb levels <12 g/dL and had similar safety profiles, though more patients in the ≥10 g/dL baseline-Hb group reached the threshold Hb of ≥13 g/dL.</p> <p>Conclusion</p> <p>In this exploratory analysis, darbepoetin alfa Q3W and QW raised Hb levels and maintained mean Hb at <12 g/dL in both baseline-Hb groups. The ≥10 g/dL baseline-Hb group had fewer transfusions and faster anemia correction. Additional studies should prospectively evaluate the relationship between Hb levels at ESA initiation and outcomes.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov Identifier NCT00118638.</p

    Buffering and the evolution of chromosome-wide gene regulation

    Get PDF
    Copy number variation (CNV) in terms of aneuploidies of both entire chromosomes and chromosomal segments is an important evolutionary driving force, but it is inevitably accompanied by potentially problematic variations in gene doses and genomic instability. Thus, a delicate balance must be maintained between mechanisms that compensate for variations in gene doses (and thus allow such genomic variability) and selection against destabilizing CNVs. In Drosophila, three known compensatory mechanisms have evolved: a general segmental aneuploidy-buffering system and two chromosome-specific systems. The two chromosome-specific systems are the male-specific lethal complex, which is important for dosage compensation of the male X chromosome, and Painting of fourth, which stimulates expression of the fourth chromosome. In this review, we discuss the origin and function of buffering and compensation using Drosophila as a model

    Identification of 14-3-3γ as a Mieap-interacting protein and its role in mitochondrial quality control

    Get PDF
    Mieap, a p53-inducible protein, controls mitochondrial integrity by inducing the accumulation of lysosomal proteins within mitochondria. This phenomenon is designated MALM, for Mieap-induced accumulation of lysosome-like organelles within mitochondria. To identify this novel Mieap-interacting protein(s), we performed a two-dimensional image-converted analysis of liquid chromatography and mass spectrometry (2DICAL) on the proteins immunoprecipitated by an anti-Mieap antibody. We indentified 14-3-3γ as one of the proteins that was included in the Mieap-binding protein complex when MALM was induced. The interaction between Mieap and 14-3-3γ was confirmed on the exogenous and endogenous proteins. Interestingly, 14-3-3γ was localized within mitochondria when MALM occurred. A 14-3-3γ deficiency did not affect the accumulation of Mieap and lysosomal proteins within mitochondria, but dramatically inhibited the elimination of oxidized mitochondrial proteins. These results suggest that 14-3-3γ plays a critical role in eliminating oxidized mitochondrial proteins during the MALM process by interacting with Mieap within mitochondria

    Buffering of Segmental and Chromosomal Aneuploidies in Drosophila melanogaster

    Get PDF
    Chromosomal instability, which involves the deletion and duplication of chromosomes or chromosome parts, is a common feature of cancers, and deficiency screens are commonly used to detect genes involved in various biological pathways. However, despite their importance, the effects of deficiencies, duplications, and chromosome losses on the regulation of whole chromosomes and large chromosome domains are largely unknown. Therefore, to explore these effects, we examined expression patterns of genes in several Drosophila deficiency hemizygotes and a duplication hemizygote using microarrays. The results indicate that genes expressed in deficiency hemizygotes are significantly buffered, and that the buffering effect is general rather than being mainly mediated by feedback regulation of individual genes. In addition, differentially expressed genes in haploid condition appear to be generally more strongly buffered than ubiquitously expressed genes in haploid condition, but, among genes present in triploid condition, ubiquitously expressed genes are generally more strongly buffered than differentially expressed genes. Furthermore, we show that the 4th chromosome is compensated in response to dose differences. Our results suggest general mechanisms have evolved that stimulate or repress gene expression of aneuploid regions as appropriate, and on the 4th chromosome of Drosophila this compensation is mediated by Painting of Fourth (POF)

    HIV-1 Tat protein alter the tight junction integrity and function of retinal pigment epithelium: an in vitro study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>How HIV-1 enter into the eyes remains obscure. We postulated that HIV-1 Tat protein can alter the expression of specific tight-junction proteins and disturb the blood retinal barrier, and contributes to HIV trafficking into the eyes. This study is to determine the effects of HIV-1 Tat proteins on the barrier function and tight-junction protein expression of retinal pigment epithelial cell (RPE).</p> <p>Methods</p> <p>A human RPE cell line (D407) cultured on microporous filter-supports was used. After treating with HIV-1 Tat protein, transepithelial electrical resistance (TER) of confluent RPE cells was measured by epithelial voltmeter. The permeability of the RPE cells to sodium fluorescein was measured. The expressions of the occludin and claudins were determined by real-time polymerase chain reaction, immunofluorescence, and Western blot analysis. Activation of ERK1/2 was detected by Western blot analysis with specific antiphospho protein antibodies. NF-κB DNA binding activity was determined by transcription factor assay. Specific pharmacologic inhibitors directed against the MAPKs were used to analyze the signaling involved in barrier destruction of RPE cells exposed to HIV-1 Tat.</p> <p>Results</p> <p>Treating cultured human retinal pigment epithelial cells with 100 nM Tat for 24 hours increased the permeability and decreased the TER of the epithelial monolayer. HIV-1 Tat also disrupted and downregulated the tight-junction proteins claudin-1, claudin-3, and claudin-4 in these cells, whereas claudin-2 was upregulated, and the expression of occludin was unaffected. HIV-1 Tat protein also induced activation of ERK1/2 and NF-κB. HIV-1 Tat protein induced barrier destruction, changes in expression of TJs, and activation of ERK1/2 and NF-κB were abrogated by inhibitor of ERK1/2 and NF-κB.</p> <p>Conclusion</p> <p>HIV-1 Tat protein causes increases in the paracellular permeability of RPE cells in vitro concomitant with changes in expression of certain transmembrane proteins associated with the tight junction. The effects of HIV-1 Tat on barrier function of the RPE may be mediated by ERK MAPK and NF-κB activation, which may represent potential targets for novel therapeutic approaches for the retinopathy induced by HIV infection.</p
    corecore