2,130 research outputs found
A matrix isolation and computational study of molecular palladium fluorides : does PdF₆ exist?
Palladium atoms generated by thermal evaporation and laser ablation were reacted with and trapped in F₂ /Ar, F₂ /Ne, and neat F₂ matrices. The products were characterized by electronic absorption and infrared spectroscopy, together with relativistic density functional theory calculations as well as coupled cluster calculations. Vibrational modes at 540 and 617 cm⁻¹ in argon matrices were assigned to molecular PdF and PdF₂ , and a band at 692 cm⁻¹ was assigned to molecular PdF₄ . A band at 624 cm⁻¹ can be assigned to either PdF₃ or PdF₆, with the former preferred from experimental considerations. Although calculations might support the latter assignment, our conclusion is that in these detailed experiments there is no convincing evidence for PdF₆
Clinical Outcomes of the Ilizarov Method After an Infected Tibial Non Union
Background: The Ilizarov technique has been used in the UK for the last 20 years in the management of infected non-union of long bones. This method uses fine wires inserted percutaneously which are attached and tensioned to provide a strong frame construct. The majority of tibial and femoral non unions can be treated successfully by internal fixation. However, an infected non-union of the tibia can prove a difficult problem. The Ilizarov method can prove useful for treating these complex injuries.
Objectives: To assess whether a new limb reconstruction centre in the UK has comparable results.
Patients and Methods: Twelve patients (10 M: 2 F; Avg age 43.3 years) who had an infected tibial non-union between March 2009 and August 2010 treated with the Ilizarov technique. Intervention method was Ilizarov technique and main outcome measures include functional and radiological outcomes assessed using the Association for the Study and Application of Methods of Ilizarov (ASAMI) criteria, American Orthopaedic Foot and Ankle Score (AOFAS) and Visual Analogue Pain scores.
Results: All twelve patients united. None required amputation. Mean time to union was 46 weeks (range 24 - 70/median 50). The average follow up time was 62 weeks (39 - 164/ median 59). According to the ASAMI score bone/radiological results ten were classed as excellent with the remainder being good. Functionally six were graded as excellent, four as good and two as poor. The average AOFAS score was 83/100 (70 - 90) and pain visual analogue scale (VAS) was two.
Conclusions: Our results in terms of ASAMI scores are comparable with the published literature. Furthermore, our return to work is better than most European studies (63%). All our patients said they would have the procedure again. We attribute this success partly to the multidisciplinary approach. We recommend early referral to a dedicated unit if there is any evidence of a non-union
Integrating language learning practises in first year science disciplines
Student retention and progression rates are a matter of concern for most institutions in the higher education sector (Burton & Dowling, 2005;. Simpson, 2006;. Tinto & Pusser, 2006) in Australia. There is also a substantial body of literature concentrating on the first year experience at university (for example, in the Australian context, see Krause, Hartley, James, McInnis, & Centre for the Study of Higher Education. University of Melbourne, 2005). One of the particular concerns is that the diversity of the student body is rapidly increasing. Of course, with diversity comes with differentiated level of preparation for academic study within the student body
Language difficulties in first year Science
A key goal of the study entitled ‘A cross-disciplinary approach to language support for first year students in the science disciplines’, funded by the Carrick Institute for Learning and Teaching in Higher Education, is to examine the role of language in the learning of science by first-year university students. The disciplines involved are Physics, Chemistry and Biology. This national project also aims to transfer active learning skills, which are widely used in language teaching, to the teaching of science in first year. The paper discusses the background to the study, reports on some of the preliminary results on the language difficulties faced by first year student cohorts in science from data collected in 2008, and describes the framework we have established for the organization and delivery of first year science courses to be implemented in semester one 2009
Cellular-level versus receptor-level response threshold hierarchies in T-Cell activation
Peptide-MHC (pMHC) ligand engagement by T-cell receptors (TCRs) elicits a variety of cellular responses, some of which require substantially more TCR-mediated stimulation than others. This threshold hierarchy could reside at the receptor level, where different response pathways branch off at different stages of the TCR/CD3 triggering cascade, or at the cellular level, where the cumulative TCR signal registered by the T-cell is compared to different threshold values. Alternatively, dual-level thresholds could exist. In this study, we show that the cellular hypothesis provides the most parsimonious explanation consistent with data obtained from an in-depth analysis of distinct functional responses elicited in a clonal T-cell system by a spectrum of biophysically defined altered peptide ligands across a range of concentrations. Further, we derive a mathematical model that describes how ligand density, affinity, and off-rate all affect signaling in distinct ways. However, under the kinetic regime prevailing in the experiments reported here, the TCR/pMHC class I (pMHCI) dissociation rate was found to be the main governing factor. The CD8 coreceptor modulated the TCR/pMHCI interaction and altered peptide ligand potency. Collectively, these findings elucidate the relationship between TCR/pMHCI kinetics and cellular function, thereby providing an integrated mechanistic understanding of T-cell response profiles
Embedding in-discipline language support for first year students in the sciences
This paper reports on a project which aims at addressing the need to cater for the language needs of a diverse student body (both domestic and international student body) by embedding strategic approaches to learning and teaching in first year sciences in tertiary education. These strategies consist of active learning skills which are widely used in language learning. The disciplines covered by the project are Biology, Chemistry and Physics and involves the University of Canberra (UC), University of Sydney (USyd), University of Tasmania (UTAS), University of Technology, Sydney (UTS) and University of Newcastle (Newcastle) in Australia. This project is funded by the Australian Learning and Teaching Council (ALTC). The paper discusses the background to the study and reports on results on the language difficulties faced by first year science student cohorts from data collected in 2008 as well as qualitative data was also collected on 2008 students’ attitudes towards online science learning. It will also report on the results on the implementation of the learning strategies at UTS and UTAS in Physics and Chemistry disciplines in 2009. Keywords: First year science teaching, role of language in science teaching, active learning skill
Mutational and Structural Analysis of KIR3DL1 Reveals a Lineage-Defining Allotypic Dimorphism That Impacts Both HLA and Peptide Sensitivity
Killer Ig-like receptors (KIRs) control the activation of human NK cells via interactions with peptide-laden HLAs. KIR3DL1 is a highly polymorphic inhibitory receptor that recognizes a diverse array of HLA molecules expressing the Bw4 epitope, a group with multiple polymorphisms incorporating variants within the Bw4 motif. Genetic studies suggest that KIR3DL1 variation has functional significance in several disease states, including HIV infection. However, owing to differences across KIR3DL1 allotypes, HLA-Bw4, and associated peptides, the mechanistic link with biological outcome remains unclear. In this study, we elucidated the impact of KIR3DL1 polymorphism on peptide-laden HLA recognition. Mutational analysis revealed that KIR residues involved in water-mediated contacts with the HLA-presented peptide influence peptide binding specificity. In particular, residue 282 (glutamate) in the D2 domain underpins the lack of tolerance of negatively charged C-terminal peptide residues. Allotypic KIR3DL1 variants, defined by neighboring residue 283, displayed differential sensitivities to HLA-bound peptide, including the variable HLA-B*57:01-restricted HIV-1 Gag-derived epitope TW10. Residue 283, which has undergone positive selection during the evolution of human KIRs, also played a central role in Bw4 subtype recognition by KIR3DL1. Collectively, our findings uncover a common molecular regulator that controls HLA and peptide discrimination without participating directly in peptide-laden HLA interactions. Furthermore, they provide insight into the mechanics of interaction and generate simple, easily assessed criteria for the definition of KIR3DL1 functional groupings that will be relevant in many clinical applications, including bone marrow transplantation
Recommended from our members
Biases in the perceived timing of perisaccadic perceptual and motor events
Subjects typically experience the temporal interval immediately following a saccade as longer than a comparable control interval. One explanation of this effect is that the brain antedates the perceptual onset of a saccade target to around the time of saccade initiation. This could explain the apparent continuity of visual perception across eye movements. Thisantedating account was tested in three experiments in which subjects made saccades of differing extents and then judged either the duration or the temporal order of key events. Postsaccadic stimuli underwent subjective temporal lengthening and had early perceived onsets. A temporally advanced awareness of saccade completion was also found, independently of antedating effects. These results provide convergent evidence supporting antedating and differentiating it from other temporal biases
Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory
We report a multi-resolution search for anisotropies in the arrival
directions of cosmic rays detected at the Pierre Auger Observatory with local
zenith angles up to  and energies in excess of 4 EeV ( eV). This search is conducted by measuring the angular power spectrum
and performing a needlet wavelet analysis in two independent energy ranges.
Both analyses are complementary since the angular power spectrum achieves a
better performance in identifying large-scale patterns while the needlet
wavelet analysis, considering the parameters used in this work, presents a
higher efficiency in detecting smaller-scale anisotropies, potentially
providing directional information on any observed anisotropies. No deviation
from isotropy is observed on any angular scale in the energy range between 4
and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no
other deviation from isotropy is observed for moments beyond the dipole one.
The corresponding -values obtained after accounting for searches blindly
performed at several angular scales, are  in the case of
the angular power spectrum, and  in the case of the needlet
analysis. While these results are consistent with previous reports making use
of the same data set, they provide extensions of the previous works through the
thorough scans of the angular scales.Comment: Published version. Added journal reference and DOI. Added Report
  Numbe
- …
