11 research outputs found

    Small rock-slope failures conditioned by Holocene permafrost degradation:a new approach and conceptual model based on Schmidt-hammer exposure-age dating, Jotunheimen, southern Norway

    Get PDF
    Rock-slope failures (RSFs) constitute significant natural hazards but the geophysical processes which control their timing are poorly understood. However, robust chronologies can provide valuable information on the environmental controls on RSF occurrence: information which can inform models of RSF activity in response to climatic forcing. This paper uses Schmidt-hammer exposure-age dating (SHD) of boulder deposits to construct a detailed regional Holocene chronology of the frequency and magnitude of small rock-slope failures (SRSFs) in Jotunheimen, Norway. By focusing on the depositional fans of SRSFs (≀ 103 m3), rather than on the corresponding features of massive RSFs (~108 m3), 92 single-event RSFs are targeted for chronology building. A weighted SHD age-frequency distribution and probability density function analysis indicate four centennial- to millennial-scale periods of enhanced SRSF frequency, with a dominant mode at ~4.5 ka. Using change detection and discreet Meyer wavelet analysis, in combination with existing permafrost depth models, we propose that enhanced SRSF activity was primarily controlled by permafrost degradation. Long-term relative change in permafrost depth provides a compelling explanation for the high-magnitude departures from the SRSF background rate and accounts for (i1) the timing of peak SRSF frequency, (2ii) the significant lag (~2.2 ka) between the Holocene Thermal Maximum and the SRSF frequency peak, and (3iii) the marked decline in frequency in the late-Holocene. This interpretation is supported by geomorphological evidence, as the spatial distribution of SRSFs is strongly correlated with the aspect-dependent lower altitudinal limit of mountain permafrost in cliff faces. Results are indicative of a causal relationship between episodes of relatively warm climate, permafrost degradation and the transition to a seasonal-freezing climatic regime. This study highlights permafrost degradation as a conditioning factor for cliff collapse, and hence the importance of paraperiglacial processes; a result with implications for slope instability in glacial and periglacial environments under global warming scenarios

    Rock Slides and Topples

    No full text
    Different types of rock slides and toppling failure modes can occur in rock slope. Structural geological controls, rainfall, groundwater and earthquakes are among the factors that can contribute or triggers these rock slope failure modes. Scale (geological structure and slope), time, and damage can also play a role in the development of rock slides and topples. Rock slope analysis methods used for rock slides and topples are summarized with examples, including initial stereographic kinematic analysis, 2D/3D limit equilibrium analysis, and 2D/3D continuum, discontinuum and hybrid-lattice spring modelling

    Using pre-failure and post-failure remote sensing data to constrain the three-dimensional numerical model of a large rock slope failure

    No full text
    Factors governing rock slope stability include lithology, geological structures, hydrogeological conditions, and landform evolution. When certain conditions are met, rock slopes may become unstable, inducing deformation and failure. In the present study, an integrated remote sensing-numerical modeling approach investigates the deformation mechanisms leading to the 1965 Hope Slide, BC, Canada and the effect of slope kinematics on the longterm evolution of the slope. Pre- and post-failure datasets were used to perform a large-scale geomorphic and structural characterization, including kinematic and block-theory analyses. Extensive data collection was also undertaken using state-of-the-art remote sensing techniques, including digital photogrammetry (Structure-from-Motion), laser scanning (aerial and terrestrial), and infrared thermography. New evidence is provided that one or more prehistoric failures caused the removal of a key-block, and the initiation of long-term slope deformation and cumulative slope damage ultimately resulting in the catastrophic 1965 event. Detailed characterization of the rock slope has allowed the first three-dimensional, distinct element numerical model of the Hope Slide to be conducted. The results of the numerical simulations involving gradual reduction of the rupture surface shear strength indicate that 1965 slope failure may represent the outcome of a long-term, progressive failure mechanism that initiated after a prehistoric landslide. This combined field mapping–remote sensing– numerical modeling study clearly highlights the role of 3D slope kinematics on the geomorphic evolution of the slope, along with the associated failure mechanisms

    Rock Avalanche-Generated Sediment Mass Flows: Definitions and Hazard

    No full text
    Rock avalanches can trigger destructive associated hazards following the initial collapse and fragmentation of a rock slope failure. One of these associated hazards occurs when the material derived from the initial collapse of the source zone impacts and mobilizes a mass flow composed of sediment from along the travel path. These mass flows can be grouped into radial impact areas that occur on relatively flat, open terrain (typically a floodplain), and more linear impact areas that occur in channelized terrain. Rock avalanche-generated sediment mass flows are an important consideration because they can significantly increase the area impacted by an event, thereby increasing the hazard area, especially in valley bottoms where there are likely more elements at risk. Existing runout prediction methods do not consistently account for the increase in the impact area from rock avalanche-generated sediment mass flows. Thus, there is a need for a simple data-supported method for estimating the extent of mass flow impacts resulting from an initial rock avalanche event with sediments along the potential travel path. This paper presents data from 32 rock avalanches and 23 rock avalanche-generated sediment mass flows from around the world, described using a consistent set of quantitative and qualitative attributes. A wide range of mass flow impacts were observed, with the sediment mass flow impact area or runout length exceeding the impact of the coarse, rocky debris in some cases. The area and length impacted by the coarse, rocky debris is estimated using multiple linear regressions considering the event volume and topographic features. The sediment mass flow dataset is used as input to develop an exponential distribution of the area or runout length of the sediment mass flow over that of the coarse, rocky debris. A decision tree framework is presented for estimating the extent of potential rock avalanches and potential rock avalanche-generated sediment mass flows for hazard and risk analysis, which is demonstrated by comparing the stochastic empirical predictions to those from numerical runout modeling.ISSN:2296-646

    A remote sensing approach for the derivation of numerical modelling input data: insights from the Hope Slide, Canada

    No full text
    In this paper, we describe an integrated remote sensing approach for the collection of geomechanical data to be used as input for continuum, discontinuum, and hybrid numerical analyses. Ground-based and aerial remote sensing techniques, including terrestrial digital photogrammetry (TDP), terrestrial laser scanning (TLS), structure-frommotion photogrammetry (SfM), and terrestrial infrared thermography (IRT) may be used for collecting rock mass data appropriate for input into varied numerical modelling approaches. To demonstrate our suggested approach, we have used the 1965 Hope Slide, British Columbia, Canada. We present the mapping of rock discontinuities for numerical modelling using a hierarchical geological structure order. Large-scale geological structures which were identified and mapped on the pre-failure and present-day topography are used in a preliminary analysis of the rock slope to investigate their influence on kinematic freedom and in bounding keyblocks. Detailed geomechanical mapping is performed on three-dimensional TDP models. IRT data is used to characterize surface water seepage. Unmanned aerial vehicle (UAV) SfM imagery of the landslide debris was used to analyse the block size distribution. Preliminary numerical discontinuum 3D-DEM modelling based on this data and assigned mechanical properties shows that with detailed planning and systematic field data collection techniques, the geological engineer can obtain the data necessary to reduce both model and parameter uncertainty and allow more reliable and realistic numerical slope simulations

    Early proterozoic orogeny and exhumation of Wernecke supergroup revealed by vent facies of Wernecke Breccia, Yukon, Canada

    No full text
    In the Yukon, the oldest known supracrustal succession, the Wernecke Supergroup, was deposited in a marine basin before 1.71 Ga. The earliest orogenic event to disturb these strata was the Racklan orogeny, which produced folds and fabrics at peak temperatures of 450–550 °C. These features and those of the correlative Forward orogeny are recognized at the surface and in the subsurface throughout much of northwestern Canada. Zones of Wernecke Breccia (hydrothermal breccias, 1.60 Ga) were emplaced into the Wernecke Supergroup after Racklan deformation and metamorphism. Two main types of breccia are recognized: grey sodic breccias and colourful potassic breccias. In the Slab Mountain area, a belt of grey breccias contains abundant megaclasts of country rock including blocks of a subaerial lava succession, the Slab volcanics. These grey breccias are interpreted as a vent facies of Wernecke Breccia, and their emplacement into the stratigraphically lowest unit of the Wernecke Supergroup infers that at least 9 km of exhumation occurred in the core of a major Racklan anticline prior to brecciation. The Slab volcanics are preserved only as clasts in Wernecke Breccia and are interpreted as fragments of a former valley-filling basalt succession which overlay deformed and deeply incised strata of the Wernecke Supergroup
    corecore