51 research outputs found

    Micro-pharmacokinetics: quantifying local drug concentration at live cell membranes

    Get PDF
    Fundamental equations for determining pharmacological parameters, such as the binding afnity of a ligand for its target receptor, assume a homogeneous distribution of ligand, with concentrations in the immediate vicinity of the receptor being the same as those in the bulk aqueous phase. It is, however, known that drugs are able to interact directly with the plasma membrane, potentially increasing local ligand concentrations around the receptor. We have previously reported an infuence of ligand-phospholipid interactions on ligand binding kinetics at the β2-adrenoceptor, which resulted in distinct “micro-pharmacokinetic” ligand profles. Here, we directly quantifed the local concentration of BODIPY630/650-PEG8-S-propranolol (BY-propranolol), a fuorescent derivative of the classical β-blocker propranolol, at various distances above membranes of single living cells using fuorescence correlation spectroscopy. We show for the frst time a signifcantly increased ligand concentration immediatel adjacent to the cell membrane compared to the bulk aqueous phase. We further show a clear role of both the cell membrane and the β2-adrenoceptor in determining high local BY-propranolol concentrations at the cell surface. These data suggest that the true binding afnity of BY-propranolol for the β2-adrenoceptor is likely far lower than previously reported and highlights the critical importance of understanding the “micro-pharmacokinetic” profles of ligands for membrane-associated proteins

    Molecular diversity of Cotton leaf curl Gezira virus isolates and their satellite DNAs associated with okra leaf curl disease in Burkina Faso

    Get PDF
    Okra leaf curl disease (OLCD) is a major constraint on okra (Abelmoschus esculentus) production and is widespread in Africa. Using a large number of samples representative of the major growing regions in Burkina Faso (BF), we show that the disease is associated with a monopartite begomovirus and satellite DNA complexes. Twenty-three complete genomic sequences of Cotton leaf curl Gezira virus (CLCuGV) isolates associated with OLCD, sharing 95 to 99% nucleotide identity, were cloned and sequenced. Six betasatellite and four alphasatellite (DNA-1) molecules were also characterized. The six isolates of betasatellite associated with CLCuGV isolates correspond to Cotton leaf curl Gezira betasatellite (CLCuGB) (88 to 98% nucleotide identity). One isolate of alphasatellite is a variant of Cotton leaf curl Gezira alphasatellite (CLCuGA) (89% nucleotide identity), whereas the three others isolates appear to correspond to a new species of alphasatellite (CLCuGA most similar sequence present 52 to 60% nucleotide identity), provisionally named Okra leaf curl Burkina Faso alphasatellite (OLCBFA). Recombination analysis of the viruses demonstrated the interspecies recombinant origin of all CLCuGV isolates, with parents being close to Hollyhock leaf crumple virus (AY036009) and Tomato leaf curl Diana virus (AM701765). Combined with the presence of satellites DNA, these results highlight the complexity of begomoviruses associated with OLCD

    Suppression of Methylation-Mediated Transcriptional Gene Silencing by βC1-SAHH Protein Interaction during Geminivirus-Betasatellite Infection

    Get PDF
    DNA methylation is a fundamental epigenetic modification that regulates gene expression and represses endogenous transposons and invading DNA viruses. As a counter-defense, the geminiviruses encode proteins that inhibit methylation and transcriptional gene silencing (TGS). Some geminiviruses have acquired a betasatellite called DNA β. This study presents evidence that suppression of methylation-mediated TGS by the sole betasatellite-encoded protein, βC1, is crucial to the association of Tomato yellow leaf curl China virus (TYLCCNV) with its betasatellite (TYLCCNB). We show that TYLCCNB complements Beet curly top virus (BCTV) L2- mutants deficient for methylation inhibition and TGS suppression, and that cytosine methylation levels in BCTV and TYLCCNV genomes, as well as the host genome, are substantially reduced by TYLCCNB or βC1 expression. We also demonstrate that while TYLCCNB or βC1 expression can reverse TGS, TYLCCNV by itself is ineffective. Thus its AC2/AL2 protein, known to have suppression activity in other geminiviruses, is likely a natural mutant in this respect. A yeast two-hybrid screen of candidate proteins, followed by bimolecular fluorescence complementation analysis, revealed that βC1 interacts with S-adenosyl homocysteine hydrolase (SAHH), a methyl cycle enzyme required for TGS. We further demonstrate that βC1 protein inhibits SAHH activity in vitro. That βC1 and other geminivirus proteins target the methyl cycle suggests that limiting its product, S-adenosyl methionine, may be a common viral strategy for methylation interference. We propose that inhibition of methylation and TGS by βC1 stabilizes geminivirus/betasatellite complexes

    Differential Proteomic Analysis of Platelets Suggested Possible Signal Cascades Network in Platelets Treated with Salvianolic Acid B

    Get PDF
    Salvianolic acid B (SB) is an active component isolated from Danshen, a traditional Chinese medicine widely used for the treatment of cardiovascular disorders. Previous study suggested that SB might inhibit adhesion as well as aggregation of platelets by a mechanism involving the integrin α2β1. But, the signal cascades in platelets after SB binding are still not clear.In the present study, a differential proteomic analysis (two-dimensional electrophoresis) was conducted to check the protein expression profiles of rat platelets with or without treatment of SB. Proteins altered in level after SB exposure were identified by MALDI-TOF MS/MS. Treatment of SB caused regulation of 20 proteins such as heat shock-related 70 kDa protein 2 (hsp70), LIM domain protein CLP-36, copine I, peroxiredoxin-2, coronin-1 B and cytoplasmic dynein intermediate chain 2C. The regulation of SB on protein levels was confirmed by Western blotting. The signal cascades network induced by SB after its binding with integrin α2β1 was predicted. To certify the predicted network, binding affinity of SB to integrin α2β1 was checked in vitro and ex vivo in platelets. Furthermore, the effects of SB on protein levels of hsp70, coronin-1B and intracellular levels of Ca²+ and reactive oxygen species (ROS) were checked with or without pre-treatment of platelets using antibody against integrin α2β1. Electron microscopy study confirmed that SB affected cytoskeleton structure of platelets.Integrin α2β1 might be one of the direct target proteins of SB in platelets. The signal cascades network of SB after binding with integrin α2β1 might include regulation of intracellular Ca²+ level, cytoskeleton-related proteins such as coronin-1B and cytoskeleton structure of platelets

    The Drosophila TRPP Cation Channel, PKD2 and Dmel/Ced-12 Act in Genetically Distinct Pathways during Apoptotic Cell Clearance

    Get PDF
    Apoptosis, a genetically programmed cell death, allows for homeostasis and tissue remodelling during development of all multi-cellular organisms. Phagocytes swiftly recognize, engulf and digest apoptotic cells. Yet, to date the molecular mechanisms underlying this phagocytic process are still poorly understood. To delineate the molecular mechanisms of apoptotic cell clearance in Drosophila, we have carried out a deficiency screen and have identified three overlapping phagocytosis-defective mutants, which all delete the fly homologue of the ced-12 gene, known as Dmel\ced12. As anticipated, we have found that Dmel\ced-12 is required for apoptotic cell clearance, as for its C. elegans and mammalian homologues, ced-12 and elmo, respectively. However, the loss of Dmel\ced-12 did not solely account for the phenotypes of all three deficiencies, as zygotic mutations and germ line clones of Dmel\ced-12 exhibited weaker phenotypes. Using a nearby genetically interacting deficiency, we have found that the polycystic kidney disease 2 gene, pkd2, which encodes a member of the TRPP channel family, is also required for phagocytosis of apoptotic cells, thereby demonstrating a novel role for PKD2 in this process. We have also observed genetic interactions between pkd2, simu, drpr, rya-r44F, and retinophilin (rtp), also known as undertaker (uta), a gene encoding a MORN-repeat containing molecule, which we have recently found to be implicated in calcium homeostasis during phagocytosis. However, we have not found any genetic interaction between Dmel\ced-12 and simu. Based on these genetic interactions and recent reports demonstrating a role for the mammalian pkd-2 gene product in ER calcium release during store-operated calcium entry, we propose that PKD2 functions in the DRPR/RTP pathway to regulate calcium homeostasis during this process. Similarly to its C. elegans homologue, Dmel\Ced-12 appears to function in a genetically distinct pathway

    Illuminating the life of GPCRs

    Get PDF
    The investigation of biological systems highly depends on the possibilities that allow scientists to visualize and quantify biomolecules and their related activities in real-time and non-invasively. G-protein coupled receptors represent a family of very dynamic and highly regulated transmembrane proteins that are involved in various important physiological processes. Since their localization is not confined to the cell surface they have been a very attractive "moving target" and the understanding of their intracellular pathways as well as the identified protein-protein-interactions has had implications for therapeutic interventions. Recent and ongoing advances in both the establishment of a variety of labeling methods and the improvement of measuring and analyzing instrumentation, have made fluorescence techniques to an indispensable tool for GPCR imaging. The illumination of their complex life cycle, which includes receptor biosynthesis, membrane targeting, ligand binding, signaling, internalization, recycling and degradation, will provide new insights into the relationship between spatial receptor distribution and function. This review covers the existing technologies to track GPCRs in living cells. Fluorescent ligands, antibodies, auto-fluorescent proteins as well as the evolving technologies for chemical labeling with peptide- and protein-tags are described and their major applications concerning the GPCR life cycle are presented

    Influence of receptor number on functional responses elicited by agonists acting at the human adenosine A(1) receptor: Evidence for signaling pathway-dependent changes in agonist potency and relative intrinsic activity

    No full text
    Activation of A1 adenosine receptors leads to the inhibition of cAMP accumulation and the stimulation of inositol phosphate accumulation via pertussis toxin-sensitive G-proteins. In this study we have investigated the signaling of the A1 adenosine receptor in Chinese hamster ovary (CHO) cells, when ex-pressed at approximately 203 fmol/mg (CHOA1L) and at ap

    Theoretical study on the adsorption of armchair carbon nanotubes on the hydrogenated surface of diamond

    No full text
    corecore