89 research outputs found

    Differential elasticity in lineage segregation of embryonic stem cells

    Full text link
    The question of what guides lineage segregation is central to development, where cellular differentiation leads to segregated cell populations destined for specialized functions. Here, using optical tweezers measurements of mouse embryonic stem cells (mESCs), we reveal a mechanical mechanism based on differential elasticity in the second lineage segregation of the embryonic inner cell mass into epiblast (EPI) cells - that will develop into the fetus - and primitive endoderm (PrE) - which will form extraembryonic structures such as the yolk sac. Remarkably, we find that these mechanical differences already occur during priming and not just after a cell has committed to differentiation. Specifically, we show that the mESCs are highly elastic compared to any other reported cell type and that the PrE cells are significantly more elastic than EPI-primed cells. Using a model of two cell types differing only in elasticity we show that differential elasticity alone can lead to segregation between cell types, suggesting that the mechanical attributes of the cells contribute to the segregation process. Our findings present differential elasticity as a previously unknown mechanical contributor to the lineage segregation during the embryo morphogenesis

    Long-term feeder-free culture of human pancreatic progenitors on fibronectin or matrix-free polymer potentiates β cell differentiation

    Get PDF
    With the aim of producing β cells for replacement therapies to treat diabetes, several protocols have been developed to differentiate human pluripotent stem cells to β cells via pancreatic progenitors. While in vivo pancreatic progenitors expand throughout development, the in vitro protocols have been designed to make these cells progress as fast as possible to β cells. Here, we report on a protocol enabling a long-term expansion of human pancreatic progenitors in a defined medium on fibronectin, in the absence of feeder layers. Moreover, through a screening of a polymer library we identify a polymer that can replace fibronectin. Our experiments, comparing expanded progenitors to directly differentiated progenitors, show that the expanded progenitors differentiate more efficiently into glucose-responsive β cells and produce fewer glucagon-expressing cells. The ability to expand progenitors under defined conditions and cryopreserve them will provide flexibility in research and therapeutic production

    Polycomb enables primitive endoderm lineage priming in embryonic stem cells

    Get PDF
    Abstract Mouse embryonic stem cells (ESCs), like the blastocyst from which they are derived, contain precursors of the epiblast (Epi) and primitive endoderm (PrEn) lineages. While transient in vivo, these precursor populations readily interconvert in vitro. We show that altered transcription is the driver of these coordinated changes, known as lineage priming, in a process that exploits novel polycomb activities. We find that intragenic levels of the polycomb mark H3K27me3 anti-correlate with changes in transcription, irrespective of the gene's developmental trajectory or identity as a polycomb target. In contrast, promoter proximal H3K27me3 is markedly higher for PrEn priming genes. Consequently, depletion of this modification stimulates the degree to which ESCs are primed towards PrEn when challenged to differentiate, but has little effect on gene expression in self-renewing ESC culture. These observations link polycomb with dynamic changes in transcription and stalled lineage commitment, allowing cells to explore alternative choices prior to a definitive decision

    Expression-independent gene trap vectors for random and targeted mutagenesis in embryonic stem cells

    Get PDF
    Promoterless gene trap vectors have been widely used for high-efficiency gene targeting and random mutagenesis in embryonic stem (ES) cells. Unfortunately, such vectors are only effective for genes expressed in ES cells and this has prompted the development of expression-independent vectors. These polyadenylation (poly A) trap vectors employ a splice donor to capture an endogenous gene's polyadenylation sequence and provide transcript stability. However, the spectrum of mutations generated by these vectors appears largely restricted to the last intron of target loci due to nonsense-mediated mRNA decay (NMD) making them unsuitable for gene targeting applications. Here, we present novel poly A trap vectors that overcome the effect of NMD and also employ RNA instability sequences to improve splicing efficiency. The set of random insertions generated with these vectors show a significantly reduced insertional bias and the vectors can be targeted directly to a 5′ intron. We also show that this relative positional independence is linked to the human β-actin promoter and is most likely a result of its transcriptional activity in ES cells. Taken together our data indicate that these vectors are an effective tool for insertional mutagenesis that can be used for either gene trapping or gene targeting
    corecore