373 research outputs found

    Parkinsonism and dystonia: Clinical spectrum and diagnostic clues

    Get PDF
    The links between the two archetypical basal ganglia disorders, dystonia and parkinsonism, are manifold and stem from clinical observations, imaging studies, animal models and genetics. The combination of both, i.e. the syndrome of dystonia-parkinsonism, is not uncommonly seen in movement disorders clinics and has a myriad of different underlying aetiologies, upon which treatment and prognosis depend. Based on a comprehensive literature review, we delineate the clinical spectrum of disorders presenting with dystonia-parkinsonism. The clinical approach depends primarily on the age at onset, associated neurological or systemic symptoms and neuroimaging. The tempo of disease progression, and the response to L-dopa are further important clues to tailor diagnostic approaches that may encompass dopamine transporter imaging, CSF analysis and, last but not least, genetic testing. Later in life, sporadic neurodegenerative conditions are the most frequent cause, but the younger the patient, the more likely the cause is unravelled by the recent advances of molecular genetics that are focus of this review. Here, knowledge of the associated phenotypic spectrum is key to guide genetic testing and interpretation of test results. This article is part of the Special Issue "Parkinsonism across the spectrum of movement disorders and beyond" edited by Joseph Jankovic, Daniel D. Truong and Matteo Bologna

    Geomatics’ procedures and dynamic identification for the structural survey of the church of ‘San Juan Bautista de Huaro’ in Perú

    Get PDF
    This paper presents the feasibility of combining geometrical survey and in-situ non-destructive testing for the structural assessment of historical earthen constructions, which has typically difficult and non-documented geometries, unknown and highly variable materials, not visible damage states, and non-well de-fined boundaries and diaphragm conditions. Particularly, this paper presents the results of geometrical and structural surveys that are being carried out in the church ‘San Juan Bautista de Huaro’ in Cusco, Perú, as part of an ongoing research aiming at assessing its seismic vulnerability. The church dates back to the 17th Century and represents a typical Andean adobe church. Regarding to geometry, novel techniques such as laser scan-ning and photogrammetry from drones were successfully integrated to generate an accurate 3D reconstruc-tion, and a numerical model of the building for seismic analysis. This numerical model was preliminary cali-brated considering experimental results from operational modal analysis tests. The calibration process showed the importance of considering the connection elements in the numerical model, as well as allowed a prelimi-nary assessment of material properties.The authors would like to acknowledge the Pontificia Universidad Católica del Perú PUCP and its funding office DGI-PUCP (project 171-2015) for providing funds to the project within which this work was developed and the Peruvian Science and Technology Program (Innóvate Peru) for their financial support on the acquisition of the equipment used (Project 128-FINCYT-ECL-2014). The second and third authors gratefully acknowledge CONCYTEC for the scholarship in support of graduate studies

    Automatic Recognition of Leaves by Shape Detection Pre-Processing with Ica

    Get PDF
    In this work we present a simulation of a recognition process with perimeter characterization of a simple plant leaves as a unique discriminating parameter. Data coding allowing for independence of leaves size and orientation may penalize performance recognition for some varieties. Border description sequences are then used to characterize the leaves. Independent Component Analysis (ICA) is then applied in order to study which is the best number of components to be considered for the classification task, implemented by means of an Artificial Neural Network (ANN). Obtained results with ICA as a pre-processing tool are satisfactory, and compared with some references our system improves the recognition success up to 80.8% depending on the number of considered independent components

    Implications of the Molybdenum Coordination Environment in MFI Zeolites on Methane Dehydroaromatisation Performance

    Get PDF
    The structure and activity of Mo/Silicalite‐1 (MFI, Si/Al=∞) were compared to Mo/H‐ZSM‐5 (MFI, Si/Al=15), a widely studied catalyst for methane dehydroaromatisation (MDA). The anchoring mode of Mo was evaluated by in situ X‐ray absorption spectroscopy (XAS) and density functional theory (DFT). The results showed that in Mo/Silicalite‐1, calcination leads to dispersion of MoO3 precursor into tetrahedral Mo‐oxo species in close proximity to the microporous framework. A weaker interaction of the Mo‐oxo species with the Silicalite‐1 was determined by XAS and DFT. While both catalysts are active for MDA, Mo/Silicalite‐1 undergoes rapid deactivation which was attributed to a faster sintering of Mo species leading to the accumulation of carbon deposits on the zeolite outer surface. The results shed light onto the nature of the Mo structure(s) while evidencing the importance of framework Al in stabilising active Mo species under MDA conditions

    A different look at the spin state of Co3+^{3+} ions in CoO5_{5} pyramidal coordination

    Full text link
    Using soft-x-ray absorption spectroscopy at the Co-L2,3L_{2,3} and O-KK edges, we demonstrate that the Co3+^{3+} ions with the CoO5_{5} pyramidal coordination in the layered Sr2_2CoO3_3Cl compound are unambiguously in the high spin state. Our result questions the reliability of the spin state assignments made so far for the recently synthesized layered cobalt perovskites, and calls for a re-examination of the modeling for the complex and fascinating properties of these new materials.Comment: 5 pages 3 figure

    Magneto-Acoustic Waves of Small Amplitude in Optically Thin Quasi-Isentropic Plasmas

    Get PDF
    The evolution of quasi-isentropic magnetohydrodynamic waves of small but finite amplitude in an optically thin plasma is analyzed. The plasma is assumed to be initially homogeneous, in thermal equilibrium and with a straight and homogeneous magnetic field frozen in. Depending on the particular form of the heating/cooling function, the plasma may act as a dissipative or active medium for magnetoacoustic waves, while Alfven waves are not directly affected. An evolutionary equation for fast and slow magnetoacoustic waves in the single wave limit, has been derived and solved, allowing us to analyse the wave modification by competition of weakly nonlinear and quasi-isentropic effects. It was shown that the sign of the quasi-isentropic term determines the scenario of the evolution, either dissipative or active. In the dissipative case, when the plasma is first order isentropically stable the magnetoacoustic waves are damped and the time for shock wave formation is delayed. However, in the active case when the plasma is isentropically overstable, the wave amplitude grows, the strength of the shock increases and the breaking time decreases. The magnitude of the above effects depends upon the angle between the wave vector and the magnetic field. For hot (T > 10^4 K) atomic plasmas with solar abundances either in the interstellar medium or in the solar atmosphere, as well as for the cold (T < 10^3 K) ISM molecular gas, the range of temperature where the plasma is isentropically unstable and the corresponding time and length-scale for wave breaking have been found.Comment: 14 pages, 10 figures. To appear in ApJ January 200

    The efficacy of vigorous-intensity exercise as an aid to smoking cessation in adults with elevated anxiety sensitivity: study protocol for a randomized controlled trial

    Get PDF
    Background: Although cigarette smoking is a leading cause of death and disability in the United States (US), over 40 million adults in the US currently smoke. Quitting smoking is particularly difficult for smokers with certain types of psychological vulnerability. Researchers have frequently called attention to the relation between smoking and anxiety-related states and disorders, and evidence suggests that panic and related anxiety vulnerability factors, specifically anxiety sensitivity (AS or fear of somatic arousal), negatively impact cessation. Accordingly, there is merit to targeting AS among smokers to improve cessation outcome. Aerobic exercise has emerged as a promising aid for smoking cessation for this high-risk (for relapse) group because exercise can effectively reduce AS and other factors predicting smoking relapse (for example, withdrawal, depressed mood, anxiety), and it has shown initial efficacy for smoking cessation. The current manuscript presents the rationale, study design and procedures, and design considerations of the Smoking Termination Enhancement Project (STEP). Methods: STEP is a randomized clinical trial that compares a vigorous-intensity exercise intervention to a health and wellness education intervention as an aid for smoking cessation in adults with elevated AS. One hundred and fifty eligible participants will receive standard treatment (ST) for smoking cessation that includes cognitive behavioral therapy (CBT) and nicotine replacement therapy (NRT). In addition, participants will be randomly assigned to either an exercise intervention (ST+EX) or a health and wellness education intervention (ST+CTRL). Participants in both arms will meet 3 times a week for 15 weeks, receiving CBT once a week for the first 7 weeks, and 3 supervised exercise or health and wellness education sessions (depending on randomization) per week for the full 15-week intervention. Participants will be asked to set a quit date for 6 weeks after the baseline visit, and smoking cessation outcomes as well as putative mediator variables will be measured up to 6 months following the quit date. Discussion: The primary objective of STEP is to evaluate whether vigorous-intensity exercise can aid smoking cessation in anxiety vulnerable adults. If effective, the use of vigorous-intensity exercise as a component of smoking cessation interventions would have a significant public health impact. Specifically, in addition to improving smoking cessation treatment outcome, exercise is expected to offer benefits to overall health, which may be particularly important for smokers. The study is also designed to test putative mediators of the intervention effects and therefore has the potential to advance the understanding of exercise-anxiety-smoking relations and guide future research on this topic

    Impact Evaluation of Training Natural Leaders during a Community-Led Total Sanitation Intervention: A Cluster-Randomized Field Trial in Ghana

    Get PDF
    We used a cluster-randomized field trial to evaluate training natural leaders (NLs) as an addition to a community-led total sanitation (CLTS) intervention in Ghana. NLs are motivated community members who influence their peers’ behaviors during CLTS. The outcomes were latrine use and quality, which were assessed from surveys and direct observation. From October 2012, Plan International Ghana (Plan) implemented CLTS in 60 villages in three regions in Ghana. After 5 months, Plan trained eight NLs from a randomly selected half of the villages, then continued implementing CLTS in all villages for 12 more months. The NL training led to increased time spent on CLTS by community members, increased latrine construction, and a 19.9 percentage point reduction in open defecation (p < 0.001). The training had the largest impact in small, remote villages with low exposure to prior water and sanitation projects, and may be most effective in socially cohesive villages. For both interventions, latrines built during CLTS were less likely to be constructed of durable materials than pre-existing latrines, but were equally clean, and more often had handwashing materials. CLTS with NL training contributes to three parts of Goal 6 of the Sustainable Development Goals: eliminating open defecation, expanding capacity-building, and strengthening community participation

    Discovery of the Optical Transient of the Gamma Ray Burst 990308

    Full text link
    The optical transient of the faint Gamma Ray Burst 990308 was detected by the QUEST camera on the Venezuelan 1-m Schmidt telescope starting 3.28 hours after the burst. Our photometry gives V=18.32±0.07V = 18.32 \pm 0.07, R=18.14±0.06R = 18.14 \pm 0.06, B=18.65±0.23B = 18.65 \pm 0.23, and R=18.22±0.05R = 18.22 \pm 0.05 for times ranging from 3.28 to 3.47 hours after the burst. The colors correspond to a spectral slope of close to fνν1/3f_{\nu} \propto \nu^{1/3}. Within the standard synchrotron fireball model, this requires that the external medium be less dense than 104cm310^{4} cm^{-3}, the electrons contain >20> 20% of the shock energy, and the magnetic field energy must be less than 24% of the energy in the electrons for normal interstellar or circumstellar densities. We also report upper limits of V>12.0V > 12.0 at 132 s (with LOTIS), V>13.4V > 13.4 from 132-1029s (with LOTIS), V>15.3V > 15.3 at 28.2 min (with Super-LOTIS), and a 8.5 GHz flux of <114μJy< 114 \mu Jy at 110 days (with the Very Large Array). WIYN 3.5-m and Keck 10-m telescopes reveal this location to be empty of any host galaxy to R>25.7R > 25.7 and K>23.3K > 23.3. The lack of a host galaxy likely implies that it is either substantially subluminous or more distant than a red shift of 1.2\sim 1.2.Comment: ApJ Lett submitted, 5 pages, 2 figures, no space for 12 coauthor

    The molecular phenotype of human cardiac myosin associated with hypertrophic obstructive cardiomyopathy

    Get PDF
    AIM: The aim of the study was to compare the functional and structural properties of the motor protein, myosin, and isolated myocyte contractility in heart muscle excised from hypertrophic cardiomyopathy patients by surgical myectomy with explanted failing heart and non-failing donor heart muscle. METHODS: Myosin was isolated and studied using an in vitro motility assay. The distribution of myosin light chain-1 isoforms was measured by two-dimensional electrophoresis. Myosin light chain-2 phosphorylation was measured by sodium dodecyl sulphate-polyacrylamide gel electrophoresis using Pro-Q Diamond phosphoprotein stain. RESULTS: The fraction of actin filaments moving when powered by myectomy myosin was 21% less than with donor myosin (P = 0.006), whereas the sliding speed was not different (0.310 +/- 0.034 for myectomy myosin vs. 0.305 +/- 0.019 microm/s for donor myosin in six paired experiments). Failing heart myosin showed 18% reduced motility. One myectomy myosin sample produced a consistently higher sliding speed than donor heart myosin and was identified with a disease-causing heavy chain mutation (V606M). In myectomy myosin, the level of atrial light chain-1 relative to ventricular light chain-1 was 20 +/- 5% compared with 11 +/- 5% in donor heart myosin and the level of myosin light chain-2 phosphorylation was decreased by 30-45%. Isolated cardiomyocytes showed reduced contraction amplitude (1.61 +/- 0.25 vs. 3.58 +/- 0.40%) and reduced relaxation rates compared with donor myocytes (TT(50%) = 0.32 +/- 0.09 vs. 0.17 +/- 0.02 s). CONCLUSION: Contractility in myectomy samples resembles the hypocontractile phenotype found in end-stage failing heart muscle irrespective of the primary stimulus, and this phenotype is not a direct effect of the hypertrophy-inducing mutation. The presence of a myosin heavy chain mutation causing hypertrophic cardiomyopathy can be predicted from a simple functional assay
    corecore