179 research outputs found
Scientific instruments for climate change adaptation: estimating and optimizing the efficiency of ecosystem service provision
Adaptation to the consequences of climate change can depend on efficient use of ecosystem services (ES), i.e. a better use of natural services through management of the way in which they are delivered to society. While much discussion focuses on reducing consumption and increasing production of services, a lack of scientific instruments has so far prevented other mechanisms to improve ecosystem services efficiency from being addressed systematically as an adaptation strategy. This paper describes new methodologies for assessing ecosystem services and quantifying their values to humans, highlighting the role of ecosystem service flow analysis in optimizing the efficiency of ES provision.Ecosystem services, flow analysis, Bayesian modeling, spatial analysis, Environmental Economics and Policy, Q01, Q54, Q55, Q57,
Targeted DNA degradation using a CRISPR device stably carried in the host genome
Once an engineered organism completes its task, it is useful to degrade the associated DNA to reduce environmental release and protect intellectual property. Here we present a genetically encoded device (DNAi) that responds to a transcriptional input and degrades user-defined DNA. This enables engineered regions to be obscured when the cell enters a new environment. DNAi is based on type-IE CRISPR biochemistry and a synthetic CRISPR array defines the DNA target(s). When the input is on, plasmid DNA is degraded 10[superscript 8]-fold. When the genome is targeted, this causes cell death, reducing viable cells by a factor of 10[superscript 8]. Further, the CRISPR nuclease can direct degradation to specific genomic regions (for example, engineered or inserted DNA), which could be used to complicate recovery and sequencing efforts. DNAi can be stably carried in an engineered organism, with no impact on cell growth, plasmid stability or DNAi inducibility even after passaging for >2 months.National Science Foundation (U.S.). Synthetic Biology Engineering Research Center (SA5284-11210)United States. Defense Advanced Research Projects Agency (Contract N66001-12-C-4187
New perspectives in ecosystem services science as instruments to understand environmental securities
As societal demand for food, water and other life-sustaining resources grows, the science of ecosystem services (ES) is seen as a promising tool to improve our understanding, and ultimately the management, of increasingly uncertain supplies of critical goods provided or supported by natural ecosystems. This promise, however, is tempered by a relatively primitive understanding of the complex systems supporting ES, which as a result are often quantified as static resources rather than as the dynamic expression of human-natural systems. This article attempts to pinpoint the minimum level of detail that ES science needs to achieve in order to usefully inform the debate on environmental securities, and discusses both the state of the art and recent methodological developments in ES in this light. We briefly review the field of ES accounting methods and list some desiderata that we deem necessary, reachable and relevant to address environmental securities through an improved science of ES. We then discuss a methodological innovation that, while only addressing these needs partially, can improve our understanding of ES dynamics in data-scarce situations. The methodology is illustrated and discussed through an application related to water security in the semi-arid landscape of the Great Ruaha river of Tanzania. © 2014 The Author(s) Published by the Royal Society. All rights reserved
Towards a Comprehensive Approach to Quantifying and Mapping Ecosystem Services Flows
25 p.Recent ecosystem services research has highlighted the importance of spatial connectivity between ecosystems and their beneficiaries. Despite this need, a systematic approach to ecosystem service flow quantification has not yet emerged. In this article, we present such an approach, which we formalize as a class of agent-based models termed “Service Path Attribution Networks†(SPANs). These models, developed as part of the Artificial Intelligence for Ecosystem Services (ARIES) project, expand on ecosystem services classification terminology introduced by other authors. Conceptual elements needed to support flow modeling include a service’s rivalness, its flow routing type (e.g., through hydrologic or transportation networks, lines of sight, or other approaches), and whether the service is supplied by an ecosystem’s provision of a beneficial flow to people or by absorption of a detrimental flow before it reaches people. We describe our implementation of the SPAN framework for five ecosystem services and discuss how to generalize the approach to additional services. SPAN model outputs include maps of ecosystem service provision, use, depletion, and flows under theoretical, possible, actual, inaccessible, and blocked conditions. We highlight how these different ecosystem service flow maps could be used to support various types of decision making for conservation and resource management planning
Scientific instruments for climate change adaptation: Estimating and optimizing the efficiency of ecosystem service provision
Adaptation to the consequences of climate change can depend on efficient use of ecosystem services (ES), i.e. a better use of natural services through management of the way in which they are delivered to society. While much discussion focuses on reducing consumption and increasing production of services, a lack of scientific instruments has so far prevented other mechanisms to improve ecosystem services efficiency from being addressed systematically as an adaptation strategy. This paper describes new methodologies for assessing ecosystem services and quantifying their values to humans, highlighting the role of ecosystem service flow analysis in optimizing the efficiency of ES provision
Renal function, sodium and water homeostasis in patients with idiopathic extrahepatic portal vein thrombosis compared with normal healthy controls
Objectives. To determine whether portal hypertension in the absence of liver disease contributes to changes in renal function and renal sodium and water handling.Methods. Nine patients with extrahepatic portal vein thrombosis (PVT) with normal liver function and histology were compared with 9 matched healthy control subjects. All underwent standard measurements of glomerular filtration rate and effective renal blood flow using inulin and paraaminohippuric acid (PAH) clearances, respectively. Sodium excretion and renin and aldosterone levels were studied before, during and after an intravenous saline infusion,Results. At baseline there were no differences in inulin clearance, PAH clearance, fractional excretion of sodium and free water excretion. During and after the saline infusion both groups showed a significant increase in sodium excretion with a reduction in water excretion, while the PAH and inulin clearances remained unchanged. Although aldosterone and renin levels both fell after the infusion, aldosterone levels were significantly lower in the PVT group. There were no other significant differences between the PVT and control groups.Conclusion. Renal function and sodium and water handling were comparable in healthy controls and patients with PVT. It is unlikely that portal hypertension alone plays a significant role in the impaired ability to excrete sodium and water in patients with liver cirrhosi
From theoretical to actual ecosystem services: Mapping beneficiaries and spatial flows in ecosystem service assessments
Ecosystem services mapping and modeling has focused more on supply than demand, until recently. Whereas the potential provision of economic benefits from ecosystems to people is often quantified through ecological production functions, the use of and demand for ecosystem services has received less attention, as have the spatial flows of services from ecosystems to people. However, new modeling approaches that map and quantify service-specific sources (ecosystem capacity to provide a service), sinks (biophysical or anthropogenic features that deplete or alter service flows), users (user locations and level of demand), and spatial flows can provide a more complete understanding of ecosystem services. Through a case study in Puget Sound, Washington State, USA, we quantify and differentiate between the theoretical or in situ provision of services, i.e., ecosystems\u27 capacity to supply services, and their actual provision when accounting for the location of beneficiaries and the spatial connections that mediate service flows between people and ecosystems. Our analysis includes five ecosystem services: carbon sequestration and storage, riverine flood regulation, sediment regulation for reservoirs, open space proximity, and scenic viewsheds. Each ecosystem service is characterized by different beneficiary groups and means of service flow. Using the ARtificial Intelligence for Ecosystem Services (ARIES) methodology we map service supply, demand, and flow, extending on simpler approaches used by past studies to map service provision and use. With the exception of the carbon sequestration service, regions that actually provided services to people, i.e., connected to beneficiaries via flow paths, amounted to 16-66% of those theoretically capable of supplying services, i.e., all ecosystems across the landscape. These results offer a more complete understanding of the spatial dynamics of ecosystem services and their effects, and may provide a sounder basis for economic valuation and policy applications than studies that consider only theoretical service provision and/or use. © 2014 by the author(s)
A methodology for adaptable and robust ecosystem services assessment
Ecosystem Services (ES) are an established conceptual framework for attributing value to the benefits that nature provides to humans. As the promise of robust ES-driven management is put to the test, shortcomings in our ability to accurately measure, map, and value ES have surfaced. On the research side, mainstream methods for ES assessment still fall short of addressing the complex, multi-scale biophysical and socioeconomic dynamics inherent in ES provision, flow, and use. On the practitioner side, application of methods remains onerous due to data and model parameterization requirements. Further, it is increasingly clear that the dominant one model fits all paradigm is often ill-suited to address the diversity of real-world management situations that exist across the broad spectrum of coupled human-natural systems. This article introduces an integrated ES modeling methodology, named ARIES (ARtificial Intelligence for Ecosystem Services), which aims to introduce improvements on these fronts. To improve conceptual detail and representation of ES dynamics, it adopts a uniform conceptualization of ES that gives equal emphasis to their production, flow and use by society, while keeping model complexity low enough to enable rapid and inexpensive assessment in many contexts and for multiple services. To improve fit to diverse application contexts, the methodology is assisted by model integration technologies that allow assembly of customized models from a growing model base. By using computer learning and reasoning, model structure may be specialized for each application context without requiring costly expertise. In this article we discuss the founding principles of ARIES - both its innovative aspects for ES science and as an example of a new strategy to support more accurate decision making in diverse application contexts
- …