99 research outputs found

    A Comparative Analysis of Electric Mobility Operations in the Island States: A Case Study of Malta and Cyprus

    Get PDF
    The Malta and Cyprus partnership strengthened through the H2020 NEEMO (Networking for Excellence in Electric Mobility Operations) TWINNING project activities, which also led to the development of longer-term collaboration strategies for the future of electric mobility operations. Through information sharing between the two island nations in the Mediterranean, the major goal was to improve sustainable transportation. The capacity-building activities helped to characterise the state of the two islands’ electric transportation industries. Workshops, seminars, educational initiatives, and exchange visits are all part of the methods used to increase capacity and promote collaboration. The research highlights the significance of sustainable energy sources and infrastructure development for the smooth transition to electric mobility and transportation. Energy systems, land transportation, and the optimisation of the entire energy system are all discussed, compared and analysed. The findings highlight the legal framework, the EIRIE platform, and the differences between Malta and Cyprus in the e-mobility sector. The integration of renewable energy in both nations and the charging infrastructure, tariffs, and rates are also examined

    Integration of hybrid organic-based solar cells for micro-generation

    Get PDF
    Despite the fact that the global photovoltaic (PV) market has grown rapidly during the last two decades, driven by global climate change concerns and public policy supports of renewable energy sources, a PV system is still considered an expensive alternative energy source when compared to other sources of electricity. Emerging organic-based PV solar cells may lead to significant price reductions of a PV system. Though, in the short and medium term, the lifetime, efficiencies and reliability are expected to be lower than current commercially available silicon wafer-based and mature inorganic thin film PV modules.A consortium formed by inter-disciplinary scientists and engineers between the University of Manchester and Imperial College London was set-up to investigate organic-based hybrid solar cells. Potential solar cell materials with higher resultant conversion efficiency in research, targeting lower costs than other PV technologies were developed. The designs investigated feature hybrid organic-based quantum dot (QD) solar cells topology.This research seeks to integrate this new PV technology concept into future PV micro-generators. The challenges faced by emerging PV technologies with regard to PV module lifetime, efficiency and cost / price were summarised. The uniqueness of this work is that, throughout this research, the issues for commercialisation of emerging PV technologies for micro-generation; in particular with regards to low efficiency, short lifetime and high efficiency degradation, and low-cost / price were extensively analysed in every aspect.The technical, economic and also environmental viability perspectives of emerging PV technologies for micro-generation were found. A wide range of models and / or methodologies were developed, extended or applied for the first time to PV technologies for micro-generation, with particular focus where possible on the hybrid organic-based QD solar cells. Lifetime-adjusted calculations and life cycle costing were used to determine cost boundaries and PV electricity costs. Life cycle environmental impacts were determined by the use of life cycle analysis. A mixed integer single / multi-objective optimisation program was developed to determine optimal, compromise and trade-off relationships on PV system characteristics. These PV system characteristics, which are analysed on a systems level included module efficiency, grid interconnection rating, solar fraction, energy storage capacities, annualised life cycle costs, project worth value and environmental CO2 impacts / benefit. Finally, PV technologies for micro-generation were ranked by the use of multi-criteria decision analysis. The results clarify, inform and suggest concepts for emerging PV technologies integration for micro-generation by providing boundaries, trade-offs and suggestions to all stakeholder including commercial, domestic and public bodies.The direction for future research in emerging PV technologies for micro-generation is identified to be the development of customer decision tools for diversified PV technologies, policy adaptation for the inclusion of emerging PV technologies and large-scale manufacturing investigations on emerging PV modules that makes use of an organic-based PV technology.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    The economic feasibility of photovoltaic systems in the Maltese islands through MATLAB modelling

    Get PDF
    This research was aimed at the development of a mathematical model in MATLAB which can be used to analyze the performance of different photovoltaic systems available on the Maltese market. The model uses data regarding the solar radiation patterns of the Maltese islands and technical specifications of the photovoltaic systems to estimate the energy output and economic feasibility of a particular system. The model integrates a number of practical non-idealities such as inverter inefficiencies and yearly panel degradation and estimates their economic effects.Bajada New Energy, Bitmac ltd., Econetique, Energy Investment, JMV Vibro Blocks, Solar Engineering.peer-reviewe

    Improving the Load Estimation Process in the Design of Rural Electrification Systems

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-08-27, pub-electronic 2021-09-03Publication status: PublishedFunder: European Commission; Grant(s): 810809The design of reliable and sustainable rural electrification systems relies on accurate prediction of the electrical load. This paper evaluates the current methods for load estimation and proposes an improved approach for load estimation for off-grid unelectrified rural communities that yields more accurate estimates. Improved accuracy is mainly due to better modelling of the influence of customer habits and gender on the estimated current and future load using the Markov chain process. A program was developed using MATLAB software to generate load profiles. The results show that gender considerations have a significant impact on load profiles and that the Markov chain process can suitably be used to determine year-to-year load profiles by incorporating the effect of changes in customer habits on the estimated load. The results from the case study on energy consumption in rural community households showed an increase in average daily consumption when gender was considered during load estimation. The peak consumption when gender was considered was about 50% higher than the value for when gender was not considered

    Laminar flow of two miscible fluids in a simple network

    Full text link
    When a fluid comprised of multiple phases or constituents flows through a network, non-linear phenomena such as multiple stable equilibrium states and spontaneous oscillations can occur. Such behavior has been observed or predicted in a number of networks including the flow of blood through the microcirculation, the flow of picoliter droplets through microfluidic devices, the flow of magma through lava tubes, and two-phase flow in refrigeration systems. While the existence of non-linear phenomena in a network with many inter-connections containing fluids with complex rheology may seem unsurprising, this paper demonstrates that even simple networks containing Newtonian fluids in laminar flow can demonstrate multiple equilibria. The paper describes a theoretical and experimental investigation of the laminar flow of two miscible Newtonian fluids of different density and viscosity through a simple network. The fluids stratify due to gravity and remain as nearly distinct phases with some mixing occurring only by diffusion. This fluid system has the advantage that it is easily controlled and modeled, yet contains the key ingredients for network non-linearities. Experiments and 3D simulations are first used to explore how phases distribute at a single T-junction. Once the phase separation at a single junction is known, a network model is developed which predicts multiple equilibria in the simplest of networks. The existence of multiple stable equilibria is confirmed experimentally and a criteria for their existence is developed. The network results are generic and could be applied to or found in different physical systems

    Yellow Supergiants in the Small Magellanic Cloud (SMC): Putting Current Evolutionary Theory to the Test

    Full text link
    The yellow supergiant content of nearby galaxies provides a critical test of massive star evolutionary theory. While these stars are the brightest in a galaxy, they are difficult to identify because a large number of foreground Milky Way stars have similar colors and magnitudes. We previously conducted a census of yellow supergiants within M31 and found that the evolutionary tracks predict a yellow supergiant duration an order of magnitude longer than we observed. Here we turn our attention to the SMC, where the metallicity is 10x lower than that of M31, which is important as metallicity strongly affects massive star evolution. The SMC's large radial velocity (~160 km/s) allows us to separate members from foreground stars. Observations of ~500 candidates yielded 176 near-certain SMC supergiants, 16 possible SMC supergiants, along with 306 foreground stars and provide good relative numbers of yellow supergiants down to 12Mo. Of the 176 near-certain SMC supergiants, the kinematics predicted by the Besancon model of the Milky Way suggest a foreground contamination of >4%. After placing the SMC supergiants on the H-R diagram and comparing our results to the Geneva evolutionary tracks, we find results similar to those of the M31 study: while the locations of the stars on the H-R diagram match the locations of evolutionary tracks well, the models over-predict the yellow supergiant lifetime by a factor of ten. Uncertainties about the mass-loss rates on the main-sequence thus cannot be the primary problem with the models.Comment: Accepted by the Ap

    Steep increases in biomass demand: the possibilities of short rotation coppice (SRC) agro-forestry

    Get PDF
    At current usage levels, short rotation coppice (SRC) biomass could be considered as an untapped resource. There is a worldwide interest to extend its sustainable production significantly in a decade to come. However, the cultivation of energy crops is very site-specific and the exploitation of SRC biomass is a relatively new trend in biomass application for heat and power production with little information on its cultivation patterns and appropriate combustion technologies. In fact, documented biomass conversion technologies’ impacts in the energy sector and their commercialisation are limited. This paper aims to present a summary of technical characteristics for different biomass conversion technologies. These characteristics are not necessarily unique to all types and possible modifications of the biomass conversion technologies applied for many countries. However, the lack of technical knowledge have created situations that were previously impossible to be solved without the aid of numerous research and development activities. The developers did not capture all of the economic benefits that the technology provides which would help to reach its technical accomplishment and commercial execution

    Photovoltaic grid-forming control strategy investigation using hardware-in-the-loop experiments

    Full text link
    The frequency stability of a power system is of paramount importance, as a fast frequency swings in the system can lead to oscillatory instability, and thereby blackouts. A grid-connected microgrid, that can operate in the islanded mode can also possess such deteriorating effect due to the higher share of converter-based sources. In this paper, a coordinated frequency control within a distribution network is discussed, with a higher share of Photovoltaics (PV). The main objective of this paper is to test the grid-forming capabilities of PVs, without the requirement of an energy storage in the network. The tests were carried out with the help of the Typhoon Hardware-in-the-loop (HIL) platform using a real Cypriot network feeder. The real-time results confirm the efficacy of the PV as a grid-forming inverter, provided it has sufficient input (irradiance) to provide for the loads within the system of interest. The grid-forming PV also possesses the capability of reconnection with the utility grid through a synchronizer switch that requires minimal communication, makes the overall control independent of any other power source, subject to certain irradiance and loading conditions.Comment: 13th Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion (MEDPOWER 2022

    Optimizing the scheduling of electrified public transport system in Malta

    Get PDF
    In this paper, we describe a comparative analysis of a bus route scheduling problem as part of timetable trips. We consider the current uptake of electric buses as a viable public transportation option that will eventually phase out the diesel-engine-based buses. We note that, with the increasing number of electric buses, the complexity related to the scheduling also increases, especially stemming from the charging requirement and the dedicated infrastructure behind it. The aim of our comparative study is to highlight the brevity with which a multi-agent-system-based scheduling method can be helpful as compared to the classical mixed-integer linear-programming-based approach. The multi-agent approach we design is centralized with asymmetric communication between the master agent, the bus agent, and the depot agent, which makes it possible to solve the multi-depot scheduling problem in almost real time as opposed to the classical optimizer, which sees a multi-depot problem as a combinatorial heuristic NP-hard problem, which, for large system cases, can be computationally inefficient to solve. We test the efficacy of the multi-agent algorithm and also compare the same with the MILP objective designed in harmony with the multi-agent system. We test the comparisons first on a small network and then extend the scheduling application to real data extracted from the public transport of the Maltese Islands.peer-reviewe
    • …
    corecore