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Despite the fact that the global photovoltaic (PV) market has grown rapidly during the 
last two decades, driven by global climate change concerns and public policy supports 
of renewable energy sources, a PV system is still considered an expensive alternative 
energy source when compared to other sources of electricity.  Emerging organic-based 
PV solar cells may lead to significant price reductions of a PV system.  Though, in the 
short and medium term, the lifetime, efficiencies and reliability are expected to be lower 
than current commercially available silicon wafer-based and mature inorganic thin film 
PV modules. 
A consortium formed by inter-disciplinary scientists and engineers between the 
University of Manchester and Imperial College London was set-up to investigate 
organic-based hybrid solar cells.  Potential solar cell materials with higher resultant 
conversion efficiency in research, targeting lower costs than other PV technologies were 
developed.  The designs investigated feature hybrid organic-based quantum dot (QD) 
solar cells topology. 
This research seeks to integrate this new PV technology concept into future PV micro-
generators.  The challenges faced by emerging PV technologies with regard to PV 
module lifetime, efficiency and cost / price were summarised.  The uniqueness of this 
work is that, throughout this research, the issues for commercialisation of emerging PV 
technologies for micro-generation; in particular with regards to low efficiency, short 
lifetime and high efficiency degradation, and low-cost / price were extensively analysed 
in every aspect. 
The technical, economic and also environmental viability perspectives of emerging PV 
technologies for micro-generation were found.  A wide range of models and / or 
methodologies were developed, extended or applied for the first time to PV 
technologies for micro-generation, with particular focus where possible on the hybrid 
organic-based QD solar cells.  Lifetime-adjusted calculations and life cycle costing were 
used to determine cost boundaries and PV electricity costs.  Life cycle environmental 
impacts were determined by the use of life cycle analysis.  A mixed integer single / 
multi-objective optimisation program was developed to determine optimal, compromise 
and trade-off relationships on PV system characteristics.  These PV system 
characteristics, which are analysed on a systems level included module efficiency, grid 
interconnection rating, solar fraction, energy storage capacities, annualised life cycle 
costs, project worth value and environmental CO2 impacts / benefit.  Finally, PV 
technologies for micro-generation were ranked by the use of multi-criteria decision 
analysis.  The results clarify, inform and suggest concepts for emerging PV technologies 
integration for micro-generation by providing boundaries, trade-offs and suggestions to 
all stakeholder including commercial, domestic and public bodies. 
The direction for future research in emerging PV technologies for micro-generation is 
identified to be the development of customer decision tools for diversified PV 
technologies, policy adaptation for the inclusion of emerging PV technologies and 
large-scale manufacturing investigations on emerging PV modules that makes use of an 
organic-based PV technology. 
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Glossary 

Irradiance is a term specifically applied to solar energy irradiation. 

Irradiation is the energy per unit area on a surface. 

Feed-In-Tariffs (FITs) are policy instruments designed to support the adoption of 

renewable energy (RE) sources.  It typically includes three key provisions: (i) 

guaranteed grid access, (ii) long-term contracts for electricity produced, and (iii) the 

cost of renewable energy generation. 

Peak Sun Hours are the equivalent number of hours per day when solar irradiance 

averages 1,000W/m2. 

Performance Ratio (PR) defines the system losses such as shadowing, inverter 

inefficiencies and soiling effect.  PR is the main index for characterising the system 

performance under certain conditions. 

Photovoltaic (PV) refers to light to electricity conversion. 

Photovoltaic Solar Cell is a semiconductor device that converts the energy from 

sunlight directly into electricity by the photovoltaic (PV) effect. 

Quantum Dot (QD) discovered by Louis E. Brus and termed by Mark Reed is a 

semiconductor whose excitons inhibit in all three spatial dimensions.  Thus, QDs have 

properties in between semiconductors and discrete molecules. 

Renewable Energy (RE) is the energy generated from resources which are naturally 

replenished, such as sunlight and wind. 

Smart Grid   is a conceptual modernised energy network that delivers energy with two-

way communication between the network operator and end-user to obtain energy 

management, reduce cost or increase benefits, and increase reliability and transparency. 

Sustainable defined by Brundtland (1987) as the development that meets the 

requirements of the present without compromising the capacity of future generations to 

meet their own requirements. 
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This chapter gives an overview on the world energy resources highlighting the 

importance of solar energy and a diverse PV market to meet future energy 

demands.  The challenges facing emerging PV technologies for micro-generation 

are discussed.  Then the main aim and principal objectives of the thesis are 

identified followed by a summary of the main contributions and a brief outline of 

this thesis. 

 

The call for alternatives to fossil fuel electricity sources is urgent to mitigate climate 

change and secure future electricity supply [1].  In 2008, total global primary energy 

consumption was 474EJ which is around 15TW average power consumption [2].  From 

a wide collection of plausible global developments the Intergovernmental Panel on 

Climate Change (IPCC) anticipates the average power consumption to go up to 20 - 

50TW by 2050 [3].  Most of this current energy consumption, 87%, is driven from the 

combustion of fossil fuels, as seen in Figure 1.1.  Nuclear amounts for another 6% and 

the rest is coming from renewable energy (RE) sources which is mainly driven by hydro 

power [2]. 

 

Solar energy is the most abundant energy resource, around 86,000TW per year is 

received, as seen in Figure 1.2.  It is a globally distributed energy.  Therefore, in 

addition to climate change mitigation, solar PV energy has the following attributes. 

• It can improve energy security and independence by having a distributed 

energy source and increase the diversification of energy sources.  This makes 

countries less vulnerable to the uneven distribution of energy supplies among 

1  

Introduction 

1.1 Overview
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countries and the price volatility risks in the oil and gas prices and any 

economic turmoil.  The recent gas crisis back in 2006 showed Europe’s 

vulnerability to this source of energy, and the spiking oil prices back in July 

2008 showed modern society’s strong dependence on oil. 

• It has zero emissions, carbon free and zero waste, no radioactive waste.  PV 

systems will exceed the energy needs during production by 8 to 30 times within 

their lifetime.  In fact, solar PV electricity carbon footprint is also lower than 

traditional fossil fuel electricity energy source [4].  In addition, there is no 

direct pollution in the air such as noise pollution and harmful by-products 

during operation. 

• It has low operations and maintenance costs.  Most PV systems have no 

movable components and do not require any fuel to operate. 

• It gives an added value to the area / building such as availability of electricity 

in a rural area and opens up many opportunities for better integration by the use 

of building integrated PV (BIPV) systems which can be aesthetically pleasant, 

in addition to the buildings’ grid energy consumption savings. 

 

 
In this review, primary energy comprises commercially traded fuels only. Excluded, therefore, are fuels such as wood, 

peat and animal waste which, though important in many countries, are unreliably documented in terms of consumption 

statistics.  Also excluded are wind, geothermal and solar power generation. 

Figure 1.1: Rate of world energy usage in terawatts (TW), 1965-2005 [2] 
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 (a) (b) 

The volume of the cubes represents (a) the amount of available fossil fuels and nuclear fuel in the world compared to 

the annual solar energy on earth, and (b) the amount of available renewable energy sources as the average global 

power availability in TW of geothermal, hydropower, wind and solar energy, although only a small portion is recoverable.  

The comparisons are performed with the global energy consumption per annum. 

Figure 1.2: Available energy in the world [5, 6] 

 

• It has the capability to create thousands of new green jobs in this new field.  

Jobs can be created due to market growth in the production, design, 

installation, distribution and supply chains.  Other analytic and financial jobs 

are also attracted that deal with policies, funding processes and risk assessment. 

It is clear, that solar PV energy has many attributes to merit worldwide deployed.  Then, 

why there is no solar PV module on every roof?  The reasons are primarily related to 

cost. 

In 2010, the average solar module retail price index was $3.72 per Watt peak (Wp) in 

the United States (US), and €3.31 per Wp in the European Union (EU) [7].  This may 

translate as an average PV electricity price index between 11 and 23p/kWh1.  This 

electricity price index is based upon a climate with 5.5 hours of sunshine average over 

the year from large scale PV systems to small scale residential once.  Hence due to 

lower solar resource the PV electricity price is higher than this index.  Meanwhile the 

UK electricity cost for different sources is between 5 to 21p/kWh.  The upper range 

refers to offshore wind and carbon capture technologies. 

                                                 

1 $1.5589 = £1 as of sterling against US dollar forward rates by the Bank of England in 2010. 



34 Introduction 
  

Hence in most cases the prices for PV electricity are still high to make a major impact 

without some financial support.  The module prices usually follow the crystalline silicon 

(c-Si) wafer-based technology, which dominates the PV market with 70 to 80% share.  

Hence this high initial cost of PV modules, which accounts for 50-60% of the cost of a 

PV system, is holding the penetration and diffusion of this RE source into the electricity 

market.  Therefore, PV for electricity generation is often limited by its high price, 

compared to electricity from traditional sources such as fossil fuels and nuclear. 

Second generation thin film (TF) solar cells, classified as mature inorganic TF 

technologies, are amorphous silicon (a-Si), copper indium gallium diselenide (CIGS) 

and cadmium telluride (CdTe).  These technologies are currently cheaper to 

manufacture than c-Si.  In fact, CdTe modules are manufactured at 0.98$/Wp by First 

Solar.  However, on the market these inorganic TF PV technologies are still not cheap 

enough for widespread deployment. 

Whilst high efficiency is desirable, substantial increases in efficiency often involve 

expensive processes or complex structures such as tandem cells.  The long-term vision 

of any RE technology is to make energy use as sustainable as possible [8].  Hence, in 

the short and medium term, emerging organic-based PV including dye-sensitised 

(DSSC), organic-organic (OPV) and organic-metal oxide (hybrid-OPV) currently 

characterised by lower efficiency, lower cost and lower life expectancy than mature PV 

technologies, could present a viable alternative.  These emerging organic-based PV 

technologies offer significant cost reductions due to the opportunities for radical 

changes in the solar cell material design and processes. 

Emerging hybrid organic-based solar cells using inexpensive materials and production 

processes, were investigated within a consortium between the University of Manchester 

and Imperial College London.  The aim of this consortium was to construct affordable 

hybrid organic-based solar cells for deployment in the UK and worldwide [9].  The 

consortium focused on the combination of low cost material synthesis and low 

temperature processing together with novel photon harvesting mechanisms in order to 

develop PV devices with the long-term potential to achieve power conversion 

efficiencies approaching 10%.  This research has explored the combination of the light 

harvesting and charge transport properties of state of the art semiconductors and metal 

oxide nanostructures with the mechanical robustness and flexibility of polymer 

semiconductors to deliver a new polymer composite PV device technology, the Hybrid 

Organic-Based Quantum Dot (QD) Solar Cell. 
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The next section discusses the main challenges of emerging PV technologies for micro-

generation. 

 

Most PV systems in operation today were installed with various financial support 

schemes.  PV commercial viability requires understanding of a number of uncertain 

factors including electricity markets, cost of fossil fuels, environmental policy 

frameworks to penalise CO2 emitters, PV system output correlated with local load, and 

the need for worldwide electrification [10]. 

Ultimately PV economic competitiveness is guaranteed by progressing towards the third 

generation, that is a high efficiency and low cost, PV technology.  However, in the short 

and medium term, PV economic competitiveness may be realised even with low 

lifetime and low efficiency characteristics.  These characteristics will pose challenges 

for low-cost micro-generation integration.  These challenges which are important 

considerations in this research can be grouped into three categories, characterising every 

PV technology: namely lifetime / stability challenges, efficiency challenges and finally 

cost reduction challenges.  A synopsis of these challenges is given below under these 

three categories. 

 

1.2.1 Lifetime / stability challenges 

Shall emerging PV technologies’ lifetime / stability levels reach mature PV 

technologies? 

Mature PV technologies, in particular c-Si, have been on the market since 1950 and 

therefore, have a proven track record that brings high customer valuation of the product 

due to their efficiencies and guarantees.  In fact, performance guarantees are usually 

based on 80% of the original efficiency at 25 year lifetime, and efficiency degradation 

on the fifth and tenth year may also be guaranteed.  To some extent this vast historical 

experience, in particular a-Si, is also attributed to mature inorganic TF technologies. 

Emerging PV technologies are novel technological concepts and hence do not have a 

proven track record.  Current emerging organic-based PV technologies suffer from 

disintegration over time and have only exhibited low lifetimes.  Stability remains the 

main challenging problem, as materials are susceptible to degradation in the presence of 

oxygen and water [11-13].  Hence lifetime for OPV is most often defined as the time 

until the efficiency reaches 50% of its original or maximum value [14].  It can be 

1.2 Challenges facing emerging PV technologies



36 Introduction 
  

critically argued that this may bring system performance down however these PV 

technologies may only reach few years life expectancy (3-5 years) for successful 

applications [15].  As a low cost PV solar cell technology, even with a short lifetime 

period, there is potential to increase deployment of this PV technology in domestic 

applications [16].  In this case, replacement of PV modules about their lifetime is 

necessary since a higher system lifetime is exhibited. 

However, even with low lifetime and higher degradation rates, if produced inexpensive, 

emerging PV technologies will not only make it to niche markets such as portable 

electronic applications but also for micro-generation.  This raises questions regarding 

general characteristic boundaries for emerging PV technologies, in the short and 

medium term, on PV module lifetime / stability and efficiency levels.  Therefore, some 

methods and applications are required to discover these boundaries in terms of emerging 

PV technologies for micro-generation.  The uniqueness of most contributions in this 

research is that, throughout this thesis, the issues for commercialisation of emerging PV 

technologies in the domestic environment for micro-generation, in particular with 

regard to PV module lifetime / stability and efficiency are extensively explored on a 

systems level. 

 

1.2.2 Efficiency issues 

Should solar cells efficiencies for micro-generation be the highest? 

The efficiency of a PV solar cell is the ratio describing the fraction of incident photons 

that are converted into electricity.  Hence the power produced from a solar cell depends 

strongly on the active area being hit by photons, light wavelengths and intensity.  The 

PV active area is dependent on efficiency: the lower the efficiency, the bigger the active 

PV area and vice versa the higher the efficiency, the smaller the PV active area. 

High efficiencies are exhibited by expensive multijunction concentrators and single-

junction GaAs, technologies, which are reserved for specific applications.  These are 

followed by c-Si, mature inorganic TF and emerging PV technologies as shown in 

Figure 1.3.  Developments in solar cell performance with regard to efficiency have 

always been of high importance.  Increase in efficiency means lower active area, and 

potentially, lower production costs for the same technological process. 

So far, in traditional PV devices, any photon energy in excess of the band gap is lost as 

heat, and that accounts of around 47% of the incident photon energy.  Hence, PV solar  
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Figure 1.3: Best research-cell efficiencies [17] 

 

cell efficiency has a fundamental cap for one photon per one exciton generation under 

solar irradiation, known as the Queisser-Shockley or Thermodynamic limit which is 

about 33% efficiency.  However, nanoparticles offer a way in which this efficiency 

barrier can be broken and attain the third generation of PV technology, low cost and 

high efficiency.  In nanoparticles, such as QDs, photoexcited carrier cooling rates can be 

slow compared to bulk semiconductors and a process known as impact ionisation 

becomes competitive.  Here, photon energy in excess of the band gap is used to create 

additional electron-hole pairs instead.  In theory, the quantum efficiency can become 

greater than 100%.  This effect is known as Carrier Multiplication or Multiple Exciton 

Generation (MEG).  Hence, various configurations of QD PV Solar cells that yield at 

laboratory scale high conversion efficiencies are suggested in the literature.  This 

phenomenon has raised the possibility of organic-based QD solar cells with 

photoconversion efficiency of as much as 66% [9, 18-22]. 

For a PV module market price above $2.00/Wp, increase in PV module conversion 

efficiency may not substantiate economic benefit [23].  On the other hand, as OPV 

efficiency increases from 5 to 15%, a cost reduction from 72% to 24% respectively may 

be achieved from the present cost of TFs [24]. 

New concepts and emerging PV technologies have always started from low efficiency, 

and their performance is optimised by further research and development.  Currently lab-
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based OPV has reached 7.9% in 2009 [25].  However, emerging organic-based PV 

technologies are suggested to exhibit a minimum 5% efficiency for market deployment 

[26], while 5-10% efficiencies may be achievable with some stability concerns [27].  By 

the application of QDs for MEG, efficiency levels can also increase significantly for 

organic-based PV module. 

However, it is evident that low-cost PV module will have a profound impact in the PV 

market.  If area availability is not a concern, these low-cost PV modules, having low 

levelised electricity cost, may also integrate the micro-generation market.  Under no 

financial support schemes, having domestic local load mostly not correlated with the 

solar resource may even favour smaller systems ratings or low efficient modules.  

However, as argued above lifetime and efficiency boundaries are also important for 

sustainability.  Another niche market may be created through a trade-off between 

individual user interests and public expressed through the necessary supporting schemes 

for PV micro-generation to integrate emerging PV technologies. 

 

1.2.3 Cost reduction challenges 

What is the cost of hybrid QD solar cell and can we solve the problem of high initial 

capital cost in the short and medium term? 

The capital costs for a PV system are typically divided into two: 

i. the Balance of Module (BOM) costs / prices include modules’ materials, 

production and overhead costs; and 

ii. the Balance of System (BOS) costs include area and energy related costs for a 

complete system. 

Nowadays, the BOM and BOS costs are fairly on the same level.  In addition, the 

maintenance costs are minimal, hence most of the time neglected in grid-connected PV 

system studies, due to the current high reliability and in most cases absence of tracking 

systems. 

The long term US Department of Energy TF solar cells goal is $0.33/Wp [28].  PV 

system costs are falling.  However, further reduction in costs may be achieved by 

economies of scales or cheaper PV technologies.  On the other hand, TF technologies 

including emerging PV technologies are deemed to have a higher cost reduction 

potential than c-Si technologies thanks to several technology intrinsic advantages: 

i. Better light absorption, allowing for much thinner materials; 
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ii. Potential to achieve low manufacturing costs by large-scale high-throughput 

module production;  

iii. Potential for production on flexible substrates, allowing low-cost roll-to-roll 

manufacturing process.  This increases the range of potential applications, in 

particular building integrated PV (BIPV) systems. 

Target cost reductions of around 0.5€/Wp are deemed achievable by around 2020, 

provided that the expected increase in the production facility sizes and improvements in 

efficiencies are realised [29-31]. 

Emerging organic-based PV may hypothetically reduce even further production costs 

due to a number of reasons such as high throughput, simpler process and cheaper 

materials.  However, emerging PV technologies must cost less than or equal to today’s 

BOM costs, when considering same energy output as mature PV technologies.  In this 

way emerging PV technologies will penetrate the PV market competitively with mature 

PV technologies.  Though, the challenge to produce affordable and sustainable PV 

systems will remain. 

Future eco-societies might tend to be encouraged by affordable capital on BOM costs to 

opt for domestic PV systems with emerging PV technologies.  However, this 

encouragement remains as long as the energy production and present capital costs are 

maintained.  Understanding the future PV developments is critical to formulate public 

policies.  Public policy amendments could drastically affect the nature of investment, 

such as pay back time (PBT) and the RE market, affecting the supply and demand 

chains.  This philosophical idea is another uniqueness of most contributions in this 

research that is emphasised throughout this thesis. 

Studies on OPV manufacturing costs have already showed the potential of cost 

reductions [32, 33].  Hence understanding large-scale manufacturing costs of OPV and 

their hybrid version is important, as hybrid OPV might even offer a better efficiency 

performance.  This interest is another contribution in this research work. 

 

1.2.3.1 From laboratory to commercialisation 

Many technical barriers and basic science questions need to be solved before these 

emerging PV technologies can make their way to the commercial stage.  In order to face 

the challenges discussed above, several options exist from the lab to commercialisation 

development stages.  One route is by reducing materials usage for an increase in 

efficiency or reducing material thickness.  Another option is materials substitution and 
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solutions that are currently explored for substitution of both PV active layers and 

transparent conductors (TCs) with alternative materials.  Hence the innovation both at 

the material and device level can help in addressing possible future material concerns 

and in delivering TF technologies cost reduction potential. It could also play a decisive 

role in defining future relative cost level and market penetration for the main group of 

here considered TF technologies. 

Therefore, in the short and medium term, regular PV module replacement within a PV 

system using emerging organic-based PV technology would be required every few years 

to re-gain its operational performance.  Hence due to the attraction of low investment 

cost per module, even with a short lifetime period than current mature PV technologies, 

there may be increased deployment of PV technology especially in domestic 

applications [16].  However, before widespread commercial deployment can be 

achieved, three critical factors were suggested to be addressed: 

i. The solar cell must attain a minimum 5% efficiency.  5 to 10% efficiency may 

be attainable with some stability concerns [27], 

ii. The cells must be stable over their lifetime.  Efficiency degradation is one main 

factor of stability.  Lifetime over 10 years is desirable [34], and 

iii. The solar modules must have an equivalent life cycle investment cost (LCIC) 

and possibly energy output to mature PV technologies. 

As organic-based PV technology emerges from the laboratory and commercialisation 

begins, the result presents an opportunity for the PV market.  Researchers are always 

seeking advancements that extend lifetime, improve reliability and provide higher 

efficiencies.  Emerging PV technologies can lead to new value propositions, services, 

markets, and business models. 

Therefore, emerging PV technologies are currently attracting interest within the 

academic and industry arena.  These technologies are still at the research and 

development stage although some innovative industrial initiatives are beginning to 

explore the potential for their full scale commercialisation.  As of 2009, eight 

companies were involved in the organic TF solar cell production process [35].  

However, these challenges discussed above have not been yet addressed consistently 

with regards to emerging PV technologies for micro-generation.  Traditional 

methodologies have been used to assess the feasibility of mature PV technologies for 

micro-generation and their financial support requirements.  There is therefore a clear 

need for the extension, development and application of models and approaches to 
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investigate the importance of these challenges posed by emerging PV technologies for 

micro-generation due to their possible market integration and future deployment. 

 

The developments in emerging PV technologies have excited interests in the integration 

of these technologies within micro-generation, the largest market for PV.  Even with the 

issues to commercialise emerging organic-based PV technologies, such as, low 

efficiency, short lifetime and high efficiency degradation, this technology may 

potentially increase deployment of PV technology for micro-generation applications 

[16].  However to fully grasp this opportunity, appropriate frameworks and 

methodologies need to be used on the particular group of technology (organic-based 

PV) or structure (hybrid organic-based QD PV).  Previous literature has not addressed 

boundaries, costs, environmental concerns and integration frameworks at system level 

for both end-user interest (micro-level) and public interest (macro-level), in particular 

for hybrid organic-based QD PV, due to lack of data availability, maturity of the 

technology and uncertainty in manufacturing processes.   Therefore, this research 

provides the tools, analysis and frameworks necessary to assess any market integration 

within micro-generation for any emerging PV technology and suggests essential 

elements for market penetration.  Therefore, the principal aim of this research is: 

 

to investigate the integration of hybrid organic-based solar cells for micro-generation 

 

More specifically this research aims to achieve the following five objectives: 

 

i. to investigate and identify emerging PV technologies cost boundaries with 

respect to mature PV technologies for market competitiveness (chapter 3) 

Emerging PV technologies upper price boundaries compared to the current 

commercialised mature PV technologies are crucial to enter the market competitively 

[36]. Economic competitiveness is compared with lifetime performances and costs.  

Lifetime performances, owed by probable high efficiency degradation for emerging PV 

technologies, are a relation to the energy production.  In addition, the project costs may 

also be a factor of other future costs arising from regular replacements of PV modules.  

The developed lifetime-adjusted approach is based on life cycle costing (LCC) 

techniques.  The methodology takes the following aspects into account efficiency 

1.3 Aim and objectives of this research
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degradation, PV module lifetime, PV module efficiency, system lifetime, and financial 

parameters.  As a result cost / price boundaries are investigated and identified by the 

estimated price reduction factor (PRF). 

 

i. to develop a cost model for hybrid organic-based QD PV module and 

suggest large-scale manufacturing cost reduction opportunities (chapter 4) 

The few cost models on emerging PV technologies, based on DSSC or OPV, do not 

consider large-scale manufacturing, and therefore, are based on lab-scale productions.  

In addition, cost models for emerging organic-based QD solar cells do not exist.  The 

interest in emerging organic-based QD solar cells is important as these technologies 

may offer the potential for higher efficiencies in the long term.  Hence a cost model is 

developed and further assessment is based on large-scale manufacturing opportunities. 

 

ii. to develop a life cycle analysis for possible hybrid organic-based QD PV 

modules to demonstrate sustainability (chapter 5) 

Life Cycle Analysis (LCA) for hybrid organic-based QD cells does not exist, and 

emerging PV technologies LCA are based on DSSC or OPV.  These LCA studies do not 

usually consider system integration.  Sustainability was demonstrated on other PV 

systems using mature PV technologies.  Hence, sustainable weightings on typical hybrid 

organic-based QD PV modules were developed based on an extended LCA 

methodology. 

 

iii. to identify methods for the optimisation of a PV system within a domestic 

environment for micro-generation and suggest essential technical, economic 

and environmental elements for market penetration (Chapter 6 and 7) 

This PV system integration framework draws attention to the optimal and compromise 

characteristics of PV modules in a PV system and also the optimal and compromise 

sizing of a PV system.  While the former, PV module characteristics, were never 

suggested in literature, PV system sizing has yet not identified the potential of emerging 

PV technologies under a comprise solution between two objectives.  Hence a systems 

level optimisation is developed for the optimal integration of PV technology.  

Parameters such as optimal efficiency / area, energy storage (if available) and grid 

interconnection are evaluated.  The overall problem minimises the economic objective 

by the annualised life cycle cost (ALCC) or maximises the net present value (NPV) of 



Aim and objectives of this research  43 
   

the system.  However, other objectives are also considered.  These objectives are (i) 

minimising grid energy imports on a micro-level objective, or (ii) minimising CO2 

emissions on a macro-level objective.  These added objectives, which in total consider 

the economic, technical and environmental factors, formed the basis for development of 

the conceptual framework for multi-objective optimisation for PV market penetration 

subject to energy management constraints in a domestic environment, grid 

interconnection and energy storage response constraints. 

 

iv. to demonstrate a decision support tool for ranking current available PV 

technologies with potential developments in emerging PV technologies 

(Chapter 8) 

The use of multi-criteria analysis (MCA) for ranking PV technologies in a domestic 

environment is required due to the wide range of future available PV technologies.  The 

demonstration of MCA is performed with ELECTRE III method for a fixed available 

area site [37].  Both qualitative and quantitative criteria are identified based on 

technical, economic and environmental factors.  However an MCA study has to be 

taken in the context of a number of assumptions and estimates that are the result of the 

compilation and integration of other sections in this research work and available 

literature. 

 

This research has made significant and novel contributions in the area of integration of 

emerging PV technology for micro-generation focusing on technical, economic and 

environmental factors.  These factors are investigated and compared mainly with the 

current PV technologies used in micro-generation based on the energy produced, 

investment, cost, and sustainability.  The main contributions are summarised below: 

• Literature review is presented in such a way as to make it accessible to all 

stakeholders: on PV technologies developments, trends and characteristics, 

including energy policy support schemes to encourage PV deployment, and 

updates of recent studies related to applied or extended methods or within the 

PV technology field.  There is a throughout focus on low-cost hybrid organic-

based QD PV.  This is new on the system level discussions. 

• Comparison of PV systems using mature PV technologies and emerging 

organic-based PV from the standpoint of economic, technical and 

1.4 Main thesis contributions
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environmental considerations based on LCC and LCA methodologies.  All the 

methodologies were extended to take into account frequent replacements of PV 

modules for emerging technologies.  Different efficiency degradation and 

efficiency levels for the two PV technology groups, mature and emerging, and 

equal energy outputs were also included.  These are notable features within the 

application of methodologies within the research. 

• Development of the first cost model for a typical hybrid organic-based QD PV 

in comparison with OPV for large-scale production.  This model adds to the 

few cost models on emerging PV solar cells available in the literature.  This 

simplified cost model can be adopted for other emerging PV technologies. 

• Development of emerging PV technologies cost boundaries and sustainability 

weightings for possible hybrid organic-based QD PV modules based on LCC 

techniques and LCA methodology.  A lifetime-adjusted calculation model was 

proposed and developed.  Also, LCI of ‘green synthesis’ of PbS QD, which 

was performed within the LCA study, expanded the lack of inventory data in 

emerging PV technologies. 

• Application of single/multi-objective optimisation for the adaptation of 

emerging PV technologies within a domestic environment for two on-grid PV 

system configurations namely with and without energy storage.  The 

optimisation problem was formulated as an hourly time series mixed integer 

programming (MIP).  This conceptual framework showed trade-offs 

relationships between different objectives on the micro, as well as macro level 

namely energy costs, PV contribution to load and CO2 impacts / benefits; and 

suggested essential values of efficiency and cost of solar cell designs taking 

into account criteria such as module design, lifetime / stability, energy payback 

and overall environmental impact / benefit. 

• Application of multi-criteria decision tool ELECTRE III to compare and rank 

current PV technologies with potential developments in emerging PV 

technologies for a micro-generation application.  The need for MCA analysis 

within the micro-generation market is needed as the diversity of PV 

technologies is increasing.  This demonstrated the first MCA study on PV 

systems. 
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It is thereby shown the relations and essential characteristics where these emerging PV 

technologies would become feasible considering the assumptions taken and case 

studies.  By providing models based on tested techniques, this work supports future 

production and development of emerging PV technology. 

 

The topics covered in nine chapters of this thesis are sequentially organised, as per 

research objectives, to gather the knowledge required for an overall understanding of 

the issues related to emerging organic-based PV technologies and their integration in the 

energy system as micro-generators. 

Chapter 1: Introduction.  This chapter gives an overview on the world energy resources 

highlighting the importance of solar energy and a diverse PV market to meet future 

energy demands.  The challenges facing emerging PV technologies for micro-

generation are discussed.  Then the main aim and principal objectives of the thesis are 

identified followed by a summary of the main contributions and a brief outline of this 

thesis. 

Chapter 2: PV Technologies in a PV System.  This chapter starts by discussing the PV 

market status and a general overview on the financial support schemes for PV systems 

market integration as a catalyst for renewable energy deployment.  An overview of 

typical PV system components is given followed by the system level fundamentals of a 

PV system energy analysis which is used throughout the research.  A review is given on 

PV technologies, focused on the typical hybrid organic-based QD PV solar cell 

underdevelopment which makes use of the Multiple Exciton Generation (MEG) by 

Quantum Dots (QD). 

Chapter 3: Lifetime-Adjusted Calculations Based on Life Cycle Costing Techniques.  

This chapter describes the basic philosophy of life cycle costing.  A scenario description 

is illustrated to explain the aspects of lifetime-adjusted calculations.  This is followed by 

a description on the developed methodology.  Cost boundaries for emerging PV 

technologies are derived, and competitive module prices are shown. 

Chapter 4: Cost Assessment for Hybrid Organic-Based QD PV Module.  This chapter 

sets out the first developed cost model for typical hybrid organic-based QD solar cells 

which in parallel also analysis an organic PV (OPV) for large-scale production with 

well known components in this field.  Some discussions on alternative material 

components and roll-to-roll high throughput manufacturing are performed throughout.  

1.5 Thesis structure
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The PV levelised electricity cost (LEC) is then described, and comparison has taken 

place with other sources of electricity generation.  Further discussion on the PV LEC 

grid parity is given based on irradiance, BOS costs, BOM costs and lifetime.  Finally, 

the chapter concludes with a discussion on future development promise by emerging PV 

technologies. 

Chapter 5: Life Cycle Assessment for Hybrid Organic-Based PV Module.  The 

environmental aspects of typical hybrid organic-based QD PV modules are explored.  In 

this chapter, LCA studies on PV energy generation are reviewed.  The standardised Life 

Cycle Assessment (LCA) methodology is then introduced, and discussed LCA 

interpretation metrics used for sustainable evaluation.  The assumptions and boundaries 

are given followed by the results, comparison with other PV technologies.  Comparable 

criteria for sustainability of electricity-generating systems namely net energy ratio 

(NER), energy pay-back time (EPB-T) and electricity carbon footprint (ECF) are found 

to be lower than mature PV technologies.  In addition, PV module lifetime and 

efficiency boundaries are found for the sustainability of emerging PV technologies. 

Chapter 6: PV System Optimisation Within a Domestic Environment.  This chapter sets 

the two system configurations namely with and without energy storage, and their 

mathematical models to formulate the mixed integer program (MIP).  The general 

scenario is a PV system optimisation problem within a domestic environment which is 

investigated under no financial support schemes.  Two case studies, with fixed and 

dynamic electricity tariffs, are presented to provide optimal characteristics of a PV 

module on a system level analysis followed by a discussion on PV module lifetime with 

respect to BOM costs and a sensitivity analysis of system parameters.  Finally, the 

optimal sizing of PV system using emerging PV technologies is also investigated based 

on the technology and price development trends discussed in Chapter 4. 

Chapter 7: Multi-objective Optimisation of a PV System.  This chapter describes the 

proposed multi-objective (MO) approach as a basis of PV deployment support schemes.  

The MIP developed in chapter 6 is used to investigate another conflicting objective with 

the economic objective on a micro-level, which describes the end-user interests by 

minimising grid consumption, or macro-level, describes the public interests by 

minimising the carbon footprint.  The application of three suggested MO methods is 

demonstrated on the two system configurations.  Hence, the chapter firstly reviews MO 

studies for PV systems, which show the gap in studies related to on-grid systems.  Then 

three suggested MO methods are explained, followed by the objectives definitions for 
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the applied model.  The trade-off results of 16 scenarios are illustrated, and discussions 

on their compromise solution set are provided.  Finally, the chapter highlights the use of 

MO approach PV system integration framework that draws attention to the optimal and 

compromise characteristics of PV modules in a PV system and also the optimal and 

compromise sizing of a PV system. 

Chapter 8: Decision Support System for Ranking PV Technologies.  This chapter 

emphasises the need for a decision support system when designing a PV system.  

Hereinafter, a review on the use of ELECTRE III and similar ranking methods in RE 

applications is given.  The ELECTRE III algorithm is then described.  Next, the design 

and implementation of the decision support tool and its evaluation are discussed.  

Finally, a summary of the main points on PV technology ranks for micro-generation is 

given. 

Chapter 9: Conclusion.  This chapter highlights the main conclusions as well as 

contributions of the work undertaken in this research and suggests future research work. 

 



 



 

 

 

 

This chapter starts by discussing the PV market status and a general overview on 

the financial support schemes for PV systems market integration as a catalyst for 

renewable energy deployment.  An overview of typical PV system components is 

given followed by the system level fundamentals of a PV system energy analysis 

which is used throughout the research.  A review is given on PV technologies, 

focused on the typical hybrid organic-based QD PV solar cell underdevelopment 

which makes use of the Multiple Exciton Generation (MEG) by Quantum Dots 

(QD). 

 

2.1 Introduction 
Over the last couple of decades, there have been rising concerns with reference to global 

warming and climate change caused by green house gas (GHG) emissions.  In 1992, the 

Kyoto Protocol has been taken on board by the United Nations Framework Convention 

on Climate Change (UNFCCC).  By January 2009, the Kyoto protocol was ratified by 

184 countries [38].  This protocol suggested limits by which industrialised nations have 

to bring GHG emissions back to 1990 levels [39].  Renewable energy (RE) policies 

existed in few countries since the 1980’s, however, these policies started to materialise 

in many more countries from the second half of the 90’s, with a significant increase in 

the last few years [40, 41]. 

At the European Level, under the Kyoto Protocol, the European Union (EU) has 

committed to reducing GHG emissions by 8% from the 1990 levels between 2008 and 

2010.  Furthermore, the EU commission has published the so-called 20-20-20 package 

that sets an ambitious target by 2020 on all community which includes proposals: 

i. to reduce GHG emissions to 20% of 1990 levels,  

ii. to increase RE systems share to 20% of the overall EU energy consumption, and 

2  
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iii. to reduce 20% in energy consumption by 2020 [42, 43]. 

These targets are major policy drivers for RE deployment, including PV technologies.  

It is estimated that reaching 20% RE target requires 33% to 40% RE contribution [44]. 

 

By the end of 2009, an unexpected growth, due to the economic recession, was 

registered.  The worldwide production volume of PV modules reached 11.5GWp, and a 

22GW cumulative PV generation capacity [40].  Over the years, the PV market has 

grown radically, and the price for PV systems has decreased rapidly.  This uninterrupted 

PV market growth made PV the world’s fastest growing energy source.  The market 

expansion in a number of countries is also overwhelming this continuous PV market 

growth. 

This impressive PV market growth mostly represented by grid-connected PV market is 

mainly due to the variety of incentive schemes; thanks to regulatory and policy drivers 

[40].  These PV incentive schemes are designed to minimise the current PV burden of 

high capital costs and disparity with the grid electricity prices.  This has also driven PV 

prices down thanks to the always expanding production and the grid-parity price target 

for all REs.  Figure 2.1 shows the current PV market status and future trends, as well as 

estimates for the PV solar cell production, PV installations and price of PV modules. 

Currently the EU is leading the installed PV capacity by nearly 70% (16GW) [40].  The 

EU goal of this decade is 20% RE sources of the current energy consumption.  This 

means more than 35% RE electricity [45].  By 30 June 2010, the Member States had to 

notify the Commission about their National Renewable Energy Action Plans.  So far, 

the PV share by 2020 within the EU RE electricity mix seems to be on average 7.3% 

from 19 member states [46].  As the EU electricity demand increases annually by 1 to 2 

%, a further increase in RE is essential [47].  For PV systems to increase to 1% EU 

electricity share by 2020, there are challenges encompassing PV technology, RE 

support frameworks and grid interconnection constraints [48].  Therefore, future PV 

system design frameworks based on emerging PV technologies may have the potential 

to address these challenges and have the ability to mitigate both climate change and 

future electricity increasing demands amongst other RE sources. 

 

2.2 The PV market status 



The PV market status  51 
   

0

0.5

1

1.5

2

2.5

3

3.5

0

10000

20000

30000

40000

50000

60000

70000

£ 2
00

9/ 
W

p

Cu
m

ul
at

iv
e 

M
W

US DOE 2020 Goal 0.33$/Wp 

Installations Production Capacities PV Module Cost 

Author’s Compilation with adjusted prices to 2009 Sterling 

Estimates for 2010 onwards
Uncertain on off-grid & consumer-product markets

 
Figure 2.1: PV module production capacities, installations and costs [40, 48-51] 

 

So far, the PV market growth has not been homogenous among countries.  Recent 

market growths were seen in Spain, Germany, France, United States, South Korea, Italy 

and Japan.  A variety of incentive schemes were adopted over this decade.  However, 

the recent PV market growths were mainly influenced by the feed-in-tariffs (FITs) 

introduced successfully by French and Italy.  The FITs were initially adopted in 

Germany in 1999, and has been the model policy mechanism designed to encourage the 

adoption of RE sources.  In fact, last April 2010, the United Kingdom (UK) launched its 

FITs for solar and other RE sources. 

The search for affordable PV technologies to penetrate into the market competitively 

has increased as a result of the current PV demand, grid-parity RE energy prices and 

future smart grids.  In the future, the importance of diversified PV technologies ensures 

a sustainable PV energy supply to the market. 

 

There is a number of regulatory frameworks and policy options for the promotion and 

deployment of RE technologies.  RE support schemes can be broadly divided into 

operative, which consists of demand pull policies aimed to increase demand for a 

technology and hence its market size, and non-operative, which consists of supply push 

2.3 Renewable energy financial support schemes 
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policies aimed at pushing technologies forward [52].  So far most RE support schemes 

have focused on subsidising RE energy prices to reach national targets both in the case 

of RE deployment, as well as GHG mitigation.  This has increased demand for RE and 

increased the share of RE at the expense of escalating the ‘true’ cost of electricity.  

Figure 2.2 shows the range of possible financial instruments RE support schemes 

including possible future indirect supporting schemes. 

The RE Obligation Scheme - Quota Obligation or better known as the Renewable 

Obligation Certificate or Tradable Green Certificates (ROC / TGC) has been an issue 

for PV micro-generation in the UK as the annual electricity production is typically low 

(1-2MWh).  ROCs are issued per MWh of electricity generated either monthly or 

annually.  Generation is rounded to the nearest megawatt; however, no ROCs were 

issued for less than 0.5MWh/yr and cannot be rolled over to the next period.  In fact 

between 2006 and 2007, only 410 ROCs were issued to PV generators, an insignificant 

proportion with over 14 million issued certificates around the UK [53]. 

The Feed-in Tariffs (FITs) Scheme is adopted by most countries.  The UK has just 

introduced FITs last April 2010.  The German success with FITs has triggered other 

countries to adopt FITs as their incentive schemes.  In fact, most EU countries are 

adopting FITs as their main RE financial support scheme.  FITs give priority to access 

the grid while offering scheme guarantees, usually for a period of 20 years.  If adopted 

correctly, this scheme offers tariffs for all system levels, small-to-large scale 

developments in relation to the level of technology, having long term investment 

guaranteed.  It is simple to administer, and easy to explain.  Butler and Neuhoff 

presumed that FITs regime lacks competition in small-scale generation.  However, their 

results show that power plants become more competitive [54].  Besides, energy storage 

facilities may be prohibited within FITs schemes, which pose a future concern on the 

developments of energy storage systems. 

Other non-operative support schemes that are considered, as good practices, to stimulate 

RE deployment include tax credits, obligatory PV systems on large new buildings, as 

well as public tenders for RE projects.  These are all based on capital incentives, and 

therefore, mask also the ‘true’ electricity cost from RE electricity. 

A single support instrument is hardly feasible to cover widespread use in a country, due 

to RE variations in costs, policies and potential.  The EU Commission suggests that 

operative support schemes contribute to increasing RE sources.  Furthermore, different  
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Figure 2.2: Range of possible renewable energy financial support instruments 

 

support schemes are accompanied by several RE grid interconnection schemes.  

Countries try to perform the most feasible RE policy for both the growth of RE share as 

well as the countries present and future economic scenarios. 

Direct monetary support schemes would be phased out eventually as cost of RE 

electricity reach grid parity.  The use of indirect incentives such as the emissions trading 

scheme (ETS) enacted in the EU in 2005 is one of the environmental policies to give 

flexibility in meeting emission targets.  Furthermore, as shown in this research work, 

PV technologies will need further development to cut prices and become more 

affordable as micro-generators. 

Past and prevailing energy policies and support schemes, based on FITs, have led to the 

high cost, high efficiency PV modules to be the most attractive option to generate 

income hence reducing the electricity cost for the domestic consumer.  Figure 2.3 shows 

the three main support schemes that were adopted widespread in several countries.  The 

progress from a customer oriented support scheme to distributor and power producer 

incentives is clearly illustrated. 

Ultimately, the future essential conditions for the development of a sustainable PV 

market which acts independently from central government support schemes are: 

• to increase the importance of cost reductions, and 

• to have an effective incentive schemes until the PV technology becomes 

competitive with other generation technologies, without having a significant 

burden on the community. 
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Figure 2.3: Consumer based to power producer based support schemes [55] 

 

There are mainly two types of systems: 

i. on-grid (or grid connected) systems – these are the simplest systems that 

interface, with the electricity grid, to generate power for embedded generation.  

Some systems are considered as micro-generators while bigger systems are 

usually considered as centralised PV generators, and 

ii. off-grid (isolated / stand-alone) systems – used to generate power where it is 

not viable to connect to the grid.  These systems vary in applications such as 

commercial communication, signally purposes, product-based applications and 

remote villages. 

 

Figure 2.4 illustrates the general PV system components: 

• Arrays of PV modules each consisting of a number of PV solar cells connected 

together; 

• Structural mechanical support for PV modules; 

• Power conditioning (inverters and/or convertors), control equipment and 

measurement, protection equipment, monitoring equipment and wiring system; 

• Energy storage system; and 

2.4 Overview of a PV system
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• Any supplementary generation for a hybrid system, such as wind, diesel or 

micro-CHP. 

 

A typical on-grid system does not require the last two components as this would 

increase the system cost while may not add value to the system.  However, as we move 

towards a smarter grid in the future, more systems may incorporate battery energy 

storage to increase reliability and benefit from tariff incentives.  One potential way to 

incorporate energy storage with PV systems would be to use plug-in electric and/or 

hybrid vehicles as energy storage, if these systems are used on a large scale.  However 

energy storage growth is driven by low-cost energy storage with enhanced performance. 

In fact, as shown in future Figure 2.5, PV systems may be integrated with various loads, 

energy storage and electric power system.  The Solar Energy Grid Integration System 

(SEGIS) will require changes to existing interconnection standards and these changes 

will be necessary as solar energy systems become a larger player in the electric power 

system.  This thesis will focus on the present and future viability of on-grid systems 

using emerging organic-based PV technologies. 
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Figure 2.4: Photovoltaic system components [56] 
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Figure 2.5: The SEGIS integrated with advanced distribution systems [57]. 

 

The electricity generation directly from the PV system is proportional to the solar 

radiation (termed “irradiance”, symbol H) per square meter, the active surface area of 

the PV (A), the energy conversion efficiency of the PV (ηPV) and a Performance Ratio 

(PR – refer to APPENDIX B).  The peak sun hours can be found by the measured 

irradiance.  During the year, the peak sun hours diverge.  This measure can be 

influenced by the Earth’s position in relation to the sun, latitude, atmospheric settings, 

and any shading caused by obstructions to sunlight at a given site, refer to APPENDIX 

A.  Therefore, energy performance calculation for the hourly (h), daily (d) or yearly (y) 

energy delivery from a PV system (EPV) is described by the following simple model in 

(2.1): 

 

  / /= ⋅ ⋅ ⋅PV yr d h PVE H PR A η  (2.1) 

 

Sizing a PV system depends on the type of system.  On-grid systems are the easiest to 

size.  A customer can decide to make up for part or all of their electrical consumption.  

2.5 Fundamentals for PV systems energy analysis



Fundamentals for PV systems energy analysis  57 
   

However the choice is mainly driven by the public policy incentives.  APPENDIX D 

illustrates a simple sizing example for on-grid systems.  On the other hand, off-grid 

systems require the provision of all the electrical demands, and an additional buffer 

period for climate cycles. 

 

Green (2001) described the solar technology pathway in three generations with respect 

to efficiency and cost, refer to Figure 2.6 [58].  In addition, Figure 2.7, exhibits the 

types of PV solar cell technologies categorised by material.  The current PV market is 

dominated by the first generation of PV, which is the most mature PV technology made 

from single or poly crystalline wafer- based silicon (c-Si) exhibiting operational 

efficiency of 10% to 18% reaching 25% in laboratories.  The 20 to 30 years lifetime 

warranted by manufacturers on their performance, output up to 80% of the original 

efficiency, exhibits a reliable product.  These c-Si solar cells exhibit high energy 

demand during production because of high temperature processes.  The production is 

also limited by the silicon feedstock, though there is ongoing development for improved 

designs on this technology from manufacturers such as buried contacts, float zone 

silicon (better silicon-feedstock) and ribbon silicon (cheaper silicon feedstock). 

Thin film (TF) technologies are mainly classified as the second generation.  The first TF 

solar cell was commercialised 20 years ago back in 1980 using amorphous silicon (a-Si) 

technology.  TF technologies have initially targeted consumer electronic products such 

as calculators and watches.  Since 2005, TF technologies have experienced impressive 

growths and 30% share is estimated by 2010, refer to Figure 2.8.  To date these growth 

rates were achieved by a-Si, copper indium gallium diselenide (CIGS) and cadmium 

telluride (CdTe), classified as mature inorganic TF technologies [59]. 

Emerging PV technologies are attracting academic and industrial interests.  These 

technologies can be grouped in two categories namely organic based PV and 

concentrated PV (CPV).  Emerging organic-based PV technologies includes dye-

sensitised (DSSC), organic-organic (OPV), and organic-metal oxide (hybrid-OPV).  

These technologies are an advanced form of TF technology.  On the other hand CPV 

offers higher conversion efficiencies with an increased amount of mechanical structure 

considerations and hence maintenance. 

 

2.6 PV technologies
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Figure 2.6: The three generations of PV technology [58] 

 

 

 

 
Figure 2.7: Type of solar cell by material, structure and type. 
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Figure 2.8: Worldwide TF PV market share versus calendar year [40] 

 

2.6.1 Inorganic vs organic semiconductors [59] 

The photovoltaic effect occurs within a semiconductor layer, also referred to the 

absorber material, when exposed to light.  There exist a large number of suitable 

semiconductors.  Currently commercialised TFs make use of inorganic semiconductors.  

On the other hand, emerging organic-based PV semiconductors raise increasing interest 

for commercialisation. 

The main difference between the material systems is in the degree of localisation of the 

excited states, both excitons and charges.  In an extended crystalline inorganic 

semiconductor charges and excitons are delocalised over very many repeated units of 

the lattice.  In a molecular solid, as a result of the weak van der Waals bonding between 

molecules, excited states are localised on individual molecules or molecular segments.  

This has two important consequences for PV. 

i. The neutral excited state generated by absorption of light, i.e. the exciton, is 

localised in a small volume of space, and as a result, the Coulombic binding 

energy between the electron and the hole is too large for the charges to separate 

at room temperature.  The consequence of this is that charges can only separate 

within a binary blend film containing two electronically different materials. The 

use of two materials immediately reduces the maximum power conversion 

efficiency. 

ii. Charged excited states that result from dissociation of the exciton are also 

localised on molecular segments, and have to move by a slow hopping process. 
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This slow charge transport places a limit on the thickness of the active layer that 

can be used.  

In general, the semiconductor materials for TF technologies cannot normally be doped, 

and this makes the electrical connection between the semiconductor and electrode more 

critical and sometimes problematic.  Typical TF device structures are shown in Figure 

2.9 for single junction devices.  The illustrated devices are represented by their 

materials’ proportional thicknesses, and substrates are not included. 

 

2.6.2 The organic-based PV solar cell 

Classed as emerging organic-based PV solar cells, these technologies are currently 

under development, while being investigated for potential commercialisation.  These 

solar cells can be much thinner and potential of low material costs than other TF 

technologies.  A simple typical device structure includes an active layer with (i) 

organic-organic (OPV), such as a blend of conjugated polymer with fullerene 

derivative, or (ii) organic-inorganic (hybrid-OPV) sandwiched between two interfacial 

layers and two electrodes as shown in Figure 2.9 (e).  Some hybrid-OPV classes in 

research include the embodied quantum dots (QD), which is the focus of this research 

work within the project consortium.  Today, the efficiency of commercial organic-

organic technology is around 2% [60] and a cell efficiency record of 8.13% [25].  These 

technologies have the potential to achieve very low costs, once current efficiency and 

stability issues will be solved. 

The hybrid organic-based PV solar cells are a mixture of more than two or more types 

of semiconductor materials, getting the best from the two materials.  These solar cells 

are non-silicon based solar cells.  An organic semiconductor or polymer is well known 

for low price and flexibility, and an inorganic semiconductor is excellent in electronic 

properties [61].  The active layer contains an organic material which is typically the 

basis for active layer and nanoparticles (1nm to 100nm) made from an inorganic 

material such as Quantum Dots (QDs), synthesised within the active layer.  Therefore, 

the hybrid organic-based PV solar cell technology promises a low material and 

manufacturing cost similar to OPV.  Similar to other TF technologies, hybrid organic-

based PV offers direct complete production of modules rather than individual cell 

production.  In addition, like emerging OPV, hybrid organic-based solar cells may offer 

a range of applications as BIPV systems suitable for different shapes and designs and 
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Figure 2.9: Typical device structure for TF technologies [59, 62-64] 
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Figure 2.10: Typical hybrid organic-based QD PV devices 
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high production throughput, while may offer higher conversion efficiency as discussed 

in the Chapter 1. 

Two typical hybrid-organic based PV device structures are illustrated in Figure 2.10.  

The polymer is the hole transport medium, also known as electron donor, while the 

nanoparticles shaped as rods and/or dots are electron transport medium, also known as 

the electron acceptor.  When reference to material is made this research focuses on well 

known used materials in this field and project consortium contributions.  Hence polymer 

known as poly(3-hexylthiophene) (P3HT) is used as the electron donor, while the 

Quantum Dots (QDs) are PbS QD is used as electron acceptor.  P3HT is used 

worldwide by many research groups exhibiting high carriers’ mobility to reduce current 

losses.  At the same time, rod-shaped ZnO nanoparticles help electron transport to 

improve solar cell performance. 

 

2.6.3 Organic-based PV solar cell operation 

A PV module is made up of semiconducting material/s in the middle of the structure, 

electrical contacts at both ends and protective layers for the external environment.  The 

properties of the semiconducting material will influence the overall thickness design, 

production cost and performance.  Conventional solar cells operation described in 

Appendix C consists of pn junction/s, maintaining electric field at equilibrium. 

The principle of operation of an organic-based solar cell is shown in Figure 2.11.  The 

energy-band diagram of an organic-based solar cell is illustrating the donor-acceptor 

heterojunction photocurrent generation process.  The terms in molecular semiconductor 

related to classical semiconductors models are: 

• HOMO (Highest Occupied Molecular Orbital) – valence band (ground state) – 

Hole Transport Layer (HTL) 

• LUMO (Lowest Unoccupied Molecular Orbital) – conduction band (excited 

state) – Electron Transport Layer (ETL) 

 Acceptor – electron acceptor is the electron transport medium, nanoparticles - 

inorganic (similar to n-type) 

 Donor – electron donor is the hole transport medium, polymer - organic 

(similar to p-type) 

 

The electric field between the donor and acceptor drives exciton separation which  
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If both the excited state (LUMO) and ground state (HOMO) of the donor material lie at energies sufficiently higher than 
those of the acceptor material, then it is energetically favourable for an exciton reaching the interface to dissociate, 
leaving a positive polaron on the acceptor and a negative poleron on the donor.  For efficient photocurrent generation, 
charge separation (2) should complete successfully with geminate recombination (4) after a photon absorption event (1), 
and transfer to contacts (3) should compete with interfacial recombination (5). 

Figure 2.11:  Schematic energy-band diagram of a donor acceptor heterjunction [27] 

eventually may manage to reach the contacts generating an external electric current 

[26].  Simple device of a single organic material between two contacts excitons 

(electron-hole pair) generated from incident light are split due to the difference in work 

functions of the junction materials.  However, these simple devices have only managed 

to achieve less than 1% quantum efficiency and less than 0.1% power conversion 

efficiency (PCE), due to unsuccessful splitting because of short exciton diffusion length 

typically less than 10nm [27].  Hence the hybrid organic-based solar cell, incorporating 

nanoparticles and QD within the active layer, brings interfacial distribution between 

materials, having different electronic structures.  Therefore this PV device structure 

makes more likely to separate excitons and diffuse to the contacts [26]. 

 

2.6.4 Multiple Exciton Generation (MEG) 

Conventional PV devices, making use of bulk semiconductor can only have one 

electron-hole pair per photon.  This result in excess photon energy over band gap lost as 

heat, and hence, hot carriers rapidly cool.  Under 1 sun silicon semiconductor have 47% 

incident power lost as heat which limits the theoretical efficiency to 33%, known as the 

‘Schockley-Queisser’ Limit.  On the other hand, in semiconductor nanoparticle, the 

impact of ionisation becomes competitive with cooling.  In fact, the difference between 
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the photon energy and energy band gap is used to create extra charges.  Hence, one 

photon can excite two or more excitons, which contribute to higher photocurrent, 

consequently potential increase in PV device efficiency.  This phenomenon is called 

Multiple Exciton Generation (MEG) also known Carrier Multiplication (CM) as 

depicted in Figure 2.12.  By the use of current MEG performance with photon energy 

threshold 2 to 3 times energy band gap, efficiency between 30 to 45% can be achievable 

by semiconductor nanoparticles. 

 

Current PV market is showing expansion in TF technologies.  The search for more 

efficient and low-cost materials in the PV device structure is resulting in emerging PV 

technologies which are receiving a strong interest between stakeholders.  The models 

and approaches developed in this research provide consistency to integrate emerging PV 

technologies for micro-generation and challenges can be transferred to opportunities. 

 

 

 
 Bulk Semiconductor Semiconductor Nanoparticle 

Figure 2.12: Difference in bulk and nanoparticle semiconductor [65] 

 

 

 

2.7 Conclusion 



 

 

 

 

This chapter describes the basic philosophy of life cycle costing.  A scenario 

description is illustrated to explain the aspects of lifetime-adjusted calculations.  

This is followed by a description on the developed methodology.  Cost boundaries 

for emerging PV technologies are derived, and competitive module prices are 

shown. 

 

This chapter explores one of the first lifetime-adjusted calculations for photovoltaic 

(PV) modules based on life cycle costing (LCC).  As in section 1.2.1, emerging PV 

technology may only require few years life expectancy of the order of 3 to 5 years for 

successful application.  Therefore, it is important to understand how emerging PV 

technology and their PV systems may become an alternative to today’s mature PV 

technologies on the market.  Furthermore, the stability of the PV module, the most 

challenging task for emerging PV technologies, addressed by the efficiency degradation 

limits and different lifetimes, provides a guide for future PV designs with respect to 

energy output and investment cost of a PV system using the current mature technology 

(see section 3.5.1).  This approach was a published contribution by the author [36]. 

 

Life Cycle Costing (LCC) is a technique to find out the total cost of ownership.  It is a 

structured methodology which deals with all the elements of this total cost of 

ownership.  Hence an expenditure profile of a system over its anticipated life-span can 

be formed.  The results of an LCC study can be employed in the decision-making 

process over a number of products or systems.  The accuracy of LCC analysis 

3  

Lifetime-Adjusted Calculations 

Based on Life Cycle Costing 

3.1 Introduction 

3.2 Description of Life Cycle Costing (LCC)
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diminishes, as the project’s finances are more into the future.  Hence, long term 

assumptions are preferred on all alternatives. 

Investment appraisal may be assessed with varies LCC metrics.  The Net Present Value 

(NPV), or worth present value, is the most common technique [66, 67], representing the 

investment wealth level.  The NPV is calculated on net annual cumulative present value 

cash flows, that is annual inflows less annual outflows.  The benefit of an investment is 

indicated by a positive NPV.  All net annual cash flows are discounted over the lifetime 

of the investment.  This incorporates the time preference, which reflects the investor’s 

preference of having money today versus future revenues. 

Similarly, the Internal Rate of Return (IRR) indicates the rate of return generated by the 

investment and is the discount rate by which the NPV equals zero.  The selection over 

alternative investments is based on the highest IRR.  IRR entails more complex 

calculations than NPV and does not always provide a single answer [67].  In fact, IRR 

does not provide an indication of NPV sensitivity to cost of capital. 

Another LCC metric for investment appraisal is the Profitability Index (PI), which 

represents the present value of future cash flows generated by the project per unit of 

invested capital.  The viability is indicated by PI greater than one.  Some other 

investment appraisal tools are Payback Time (PBT), defined as the period it takes for a 

project to recover cost outlays.  Feasibility by payback period is predetermined by a 

period which is always significantly less than the project lifetime.  Last but not least is 

the Annualised Life-Cycle Cost (ALCC) appraisal metric which averages upfront 

present value of the life cycle project cost over the investment lifetime [67]. 

For the purpose of life-time adjusted calculations, present value of the Life Cycle 

Investment Costing (LCIC) was chosen as the comparable metric for investment 

between two alternatives.  The two alternatives are grouped as mature PV technology 

and emerging organic-based PV technology.  Mature PV technology includes crystalline 

solar cells (c-Si) and inorganic thin film (TF) technologies, having 20 to 30 year 

lifetime.  Emerging organic-based TF technologies includes DSSC, OPV, and hybrid-

OPV that are still under further development, however, being on the verge of 

commercialisation with lower lifetime and durability.  The comparison was also based 

on the equivalent energy output.  The present value of all investments, in solar cell 

modules, is directly related to the objective of equalising the investor capital costs with 

other mature PV technologies to present worth investment. 
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3.2.1 Parameters 

For the ease comparability of the results in this thesis, the following parameters are 

chosen to be the same throughout: 

Period of Analysis (T) - The lifetime of mature PV technologies are between 20-30 

years lifetime, which is likely guaranteed to produce up to 80% of the initial energy 

output by the end of its lifetime.  Hence the baseline for period of all analysis is taken as 

30 years, which is an plausible optimistic life expectancy of mature PV technologies in 

the short and medium term.  Some calculations for 20 and 25 year period may be also 

presented within the text. 

Lifetime (L) – Emerging organic-based PV might only reach a few years, around 3 to 5 

years, for successful commercialisation, refer to section 1.2.1.  Hence due to this 

uncertainty in the stability of these PV technologies short lifetimes between 1 to 15 

years are considered including an average degradation. 

Real Cost (Cr) - The cost at the base date, generally starting period, which excludes 

inflation rate but includes price movement mechanisms such as progress ratio and 

technology improvements.  This is the initial capital cost and replacement cost. 

Inflation Rate (i) - The rate of price increase. 

Nominal Cost (Cn) - The expected price when a cost is outstanding: including inflation 

rate and price movement mechanisms. 

Nominal Discount Rate (n) - The rate at which money increases in value if invested.  A 

typical value is between 8 to 12%. 

Real Discount Rate (r) – is the expression between inflation and nominal discount rate 

as in (3.1).  7% real discount rate was assumed throughout this research. 

  (1 )(1 )
(1 )
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+
+ =
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 (3.1) 

 

The LCIC calculation formula at base date, year is 0, is represented in (3.2); where Iy is 

an investment at year y. 
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As PV technologies progress from, wafer-based, first generation and, TF, second 

generation towards the third, advanced TF, generation, described in section 2.6, solar 

3.3 Scenario description
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cell modules currently under development may present a different investment scenario 

from the present one.  It is likely that, in the short term, commercial developments for 

emerging organic-based technologies are consumer products and in-door applications, 

rather than larger scale power generation [12, 68].  Emerging PV may also provide an 

interesting low cost alternative to conventional technologies, in particular for 

applications where flexibility is more important than efficiency.  On the other hand, in 

the short and medium term, micro-generation applications in a domestic environment 

may still be of interest as these technologies will address the cost / benefit objective 

when incentives to PV technologies will dry out. 

The financial comparative scenario illustrated in Figure 3.1 has the potential to become 

the norm for mass deployment of emerging organic-based PV technologies for micro-

generation.  The presented scenario reduces the weight of the initial high capital costs 

that make PV systems so unattractive amongst domestic users. Similarly, a lifetime-

adjusted calculation considering different lifetimes and module efficiencies was 

performed for organic printed PV technology [8]. 

However, this chapter presents the comparison of the current scenario, presented by 

mature PV technologies, to the expected one with emerging organic-based PV 

technologies, for the short and medium term.  This will result in cost and technical 

boundaries.  Therefore, a simplified method is developed to determine the cost 

boundary of future PV technologies using LCC.  The technical evaluation is based on 

the bases that similar life cycle PV energy outputs for current mature PV technologies 

make the system valuable within a domestic environment.  Critical aspects of future 

affordable PV systems are also explained in the coming sections. 

A PV technology is competitive if LCIC today is equal to current investment capital 

cost of mature PV technologies, as long as the mature technology has a positive worth 

present value throughout their lifetime under the current scenario.  For a complete 

assessment of the potential of PV technologies, it is important to understand the 

economic viability of any PV module within a system application and for the type of 

potential end user [69].  For the purpose of the proposed lifetime-adjusted calculations, 

the economic viability is assessed with a comparison methodology based on energy 

outputs and NPV of capital investment, the LCIC.  The following section 3.3.1 defines 

the assumptions to be taken to develop the methodology for the lifetime-adjusted 

calculations. 
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(Author’s Compilation) 

Figure 3.1:  Economic comparison of upfront vs regular PV investment [36] 

 

3.3.1 Assumptions 

Direct comparison between figures and results coming from different studies is not 

always straightforward because of differing approaches, assumptions and metrics.  

Hence, the assumptions taken in this section are consistent within this research for a 

coherent evaluation, unless otherwise stated, refer to Table 3.1. 

The proposed methodology is based on the lifetime of a typical current system using PV 

technologies with a lifetime between 20 to 30 years, referred to as Period of Analysis in 

this research.  Emerging organic-based PV technologies are available at a base date, 

which offer a significant low cost alternative.  However, these technologies require 

regular replacements. 

Therefore, the Balance of System (BOS) cost is equivalent at the base-date.  It is 

assumed that the BOS components are not replaced and remain unaltered throughout the 

Period of Analysis.  The BOS cost is also assumed to be equal for both mature and 

emerging PV technology based on the unit of energy generated.  Hence only the 

Balance of Module (BOM) cost is considered in this study which includes a margin for 

replacement cost. 
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Table 3.1: General assumptions 

Assumptions Value Typical Units Comments

Period of Analysis (T ) 30 20 to 30 years

Lifetime (L ) 1 to 15 5 years

Real Discount Rate (r ) 7 5 to 10 % i  and n rates included

Efficiency Degredation (δ ) 50 to 80 80 % 50% defined for OPV (section 1.2.1)

Performance Ratio (PR ) 0.85 0.6 to 1.0 refer to Appendix A for more details  
 

This section describes the model for the lifetime-adjusted approach, which will result in 

BOM cost and PV system technical boundaries.  In order to understand the model, a 

short description of a NPV profitable assessment is given in Figure 3.2.  The annual net 

cash flow for a grid-connected PV system is divided into two sections, namely the 

outflows and inflows.  The outflows represent costs including capital cost, replacement 

cost and operations and maintenance cost.  The inflows represent any revenues from RE 

policies such as ROC and FIT, reward to export energy and savings from not importing 

electricity from the grid.  However, for an equivalent energy comparable study between 

two PV technologies all variables that make up the net cash flow are coherent, based on 

the unit of energy generated, except capital cost and replacement costs as these are not 

dependent on the energy production.  Maintenance costs are not considered for 

simplicity in this study. 

Figure 3.3 provides a schematic representation of the simplified model developed based 

on LCC technique on invested capital.  From the equivalent life cycle energy production 

calculation, a comparable PV system size in watts-peak (Wp) is determined for the same 

electricity energy output.  This leads to a System Ratio (SR) parameter which requires 

design consideration if efficiency degradation is different in the comparable study.  

Meanwhile, the equivalent LCIC calculation leads to a boundary of the ‘real’ capital for 

BOM costs using emerging organic-based PV technologies in £/Wp.  Finally, this BOM 

price boundary leads to the BOM price reduction factor (PRF) of an emerging organic-

based PV technology.  This is as a factor on the BOM price for mature PV technology.  

Therefore, the model consists of two consecutive calculations.  One is based on the 

electrical energy production while the other is based on LCC investment. 

 

3.4 Methodology
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REVENUE
Savings from import

Reward to export
Reward from RE Policy:

ROCs, FITs, Grants

COSTS
Capital Costs

Replacements Costs
Maintenance & Operation 

Costs

-
Grid-Connected PV System

Net Present Value
(Discounted cash flow over 

the lifetime of the investment)

 
(Author’s Compilation) 

Figure 3.2:  Grid connected PV systems NPV model schematic representation [70] 

 

 
Figure 3.3:  Schematic representation of the simple comparable model 

 

3.4.1 Mathematical formulation 

This section describes the mathematical formulation for the life-time adjusted 

calculations.  The calculation is composed of thirty one year segments to represent 30 

years as the period of analysis.  The PV module rating in Wp is the maximum amount of 

direct current (DC) power rating ( m ax
DCP ) under 1.5AM (air mass) which is the Standard 

Test Conditions (STC) at 1000W/m2, and 25oC.  Therefore, PV module rating is directly 

proportional to the module efficiency and PV active area covered represented in (3.3): 

  max
DC

STC PVP H Aη= ⋅ ⋅  (3.3) 
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The efficiency degradation limit (δ), which is normally a missing term in PV system 

studies, is the power conversion efficiency level with respect to initial efficiency levels 

at the end of lifetime.  The representation in (3.4) shows that the equivalent energy 

generation is dependent on the efficiency degradation limits, if emerging PV 

technologies (ePV) exhibits different stability and efficiency degradation limit 

warranties from mature PV technologies (mPV) as discussed in section 1.2.1. 
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SR is the system ratio rating compared to mature PV technology under different 

efficiency degradation limit.  A graph of SR against different stability scenarios is 

illustrated in Figure 3.4.  The stability scenarios are represented by a range of efficiency 

degradation limits from 90 to 50%, on balance with an 80% efficiency degradation limit 

for mature PV technologies. 
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Figure 3.4: PV System Ratio (SR) for different efficiency degradation limits 
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This scenario mainly depends on the efficiency degradation limits.  Therefore, PV 

systems using emerging PV technologies having different efficiency degradation limit 

than mature PV technologies may require up to 20% increase in system size rating for a 

comparable energy output.  This may also lead to different initial capital costs for BOS 

components, which are not considered in this analysis.  The model is dependent on PV 

module area which is a direct representation of a PV system rating in Wp.  Hence, 

module efficiency is an independent parameter within the model.  However, an increase 

in efficiency would ultimately reduce the active area and potentially production costs. 

As discussed in section 3.3 and illustrating the scenario in Figure 3.1, the present value 

modules’ capital costs of emerging organic-based PV technology modules are 

distributed over the period of analysis timeframe.  Therefore, the equivalent economic 

calculation is represented by the LCIC of the two comparable systems to a base date in 

(3.5).  Emerging PV modules require initial costs, purchase and installation, and 

replacement cost, in proportion to the price, that is net present worth.  The cost 

adjustment factor (Costadj) , in (3.7), is implicated if the lifetimes of the solar cells had 

not expired at the last year of the analysis.  The future PV solar cell price for emerging 

PV technologies can be determined by the price reduction factor (PRF) in (3.6). 
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mPV
BOM
ePV
BOM

CostPRF
Cost

=  (3.6) 

where: 

t is studied period (yearly) 

PVα  = 1 if replacement of PV module is needed, otherwise PVα  = 0 

and, 

  ( ) ( )1 1NLadj ePV T NL
BOM BOM LCost r Cost− −⎡ ⎤= + ⋅ × −⎣ ⎦  (3.7) 

where N is the number of replacement during systems’ lifetime calculated in (3.8) 

  ⎡ ⎤= ⎢ ⎥⎢ ⎥
TN
L

-1 (3.8) 
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The calculated PRF that emerging PV technology’s BOM cost must attain when 

compared to mature PV technology is shown in Figure 3.5.  The graph shows three 

different period of analysis that is 20, 25 and 30 years scenarios which represent the 

compared lifetime with mature PV technologies.  The analysis shown is comparing 80% 

efficiency degradation limit for mature technologies with 50% efficiency degradation 

limit for emerging PV technologies. 

An exponential decay of the price reduction factor is depicted.  Significant BOM costs / 

prices reductions are needed for frequent replacements.  It is important to note that the 

cost boundaries are for the end-user BOM costs as described in section 1.2.3 and not for 

the module cost only as usually defined in the case of mature PV technologies systems.  

This means that the BOM costs / prices include modules’ materials, production and 

overhead costs.  In case of frequent replacements these overhead costs include mainly 

the labour costs to replace modules.  These overhead cost may have an impact on the 

final module cost itself as a percentage of the BOM costs.  Since this approach has not 

yet been applied in reality it is difficult to suggest this overhead cost margin.  However 

a pessimistic figure would be 25% of BOM costs while an optimistic labour 

replacement costs would be as low as 2% of the module investment replacement cost, a 

typical value used in literature for maintenance and operation costs.  This is later 

illustrated in an example in Table 3.3. 
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Figure 3.5: Price Reduction Factor (PRF) against lifetime 

3.5 Cost boundaries for emerging PV technologies
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BOM costs PRF by an order of magnitude are reached with just two years lifetime.  

Hence, it is more likely that replacement periods higher than 4-5 years are probable to 

be more economically feasible as PRF for emerging PV technologies is lower than 5 

times relative to base-date price of mature PV technology, as market penetration is 

suggested [71].  Though, lower lifetimes, 3 to 5 years, might still be useful for 

electronic devices working on PV energy.  Therefore, to be competitive, the maximum 

price of more affordable PV systems with low life expectancies, low efficiencies and 

possibly high efficiency degradation must be approximately 4 to 5 times lower than that 

of a more mature PV technology with life expectancies of 20 to 30 years.  Meanwhile, 

as PV market continues to grow, mature PV technologies’ prices are even lowered. 

 

3.5.1 Sensitivity analysis 

The model aims to compare mature PV technology with emerging ones.  In addition, the 

PRF is calculated for sensitivity analysis, which helps provide confidence in the model.  

The main uncertainties are the efficiency degradation limit, period of analysis and 

lifetime.  Hence by sensitivity assessment these uncertainties are further analysed as 

listed in Table 3.2. 

The sensitivity assessment studies the impact of replacement periods, between 1 and 15 

years, efficiency degradation limits, between 90 to 50%, and period of analysis for 20, 

25, and 30 years, on PRF.  The PRF suggests the cost boundaries for emerging PV 

technologies at a base-date.  Short lifetimes, denoting unstable and less robust  

 

Table 3.2: Sensitivity analysis for Price Reduction Factor (PRF) 

50% 60% 70% 80% 90% 50% 60% 70% 80% 90% 50% 60% 70% 80% 90%
1 13.60 12.75 12.00 11.34 10.74 14.96 14.03 13.20 12.47 11.81 15.93 14.94 14.06 13.28 12.58
2 7.03 6.59 6.20 5.86 5.55 7.74 7.25 6.83 6.45 6.11 8.24 7.72 7.27 6.86 6.50
3 4.85 4.55 4.28 4.04 3.83 5.33 5.00 4.71 4.44 4.21 5.67 5.32 5.01 4.73 4.48
4 3.75 3.52 3.31 3.13 2.96 4.13 3.88 3.65 3.45 3.26 4.40 4.13 3.88 3.67 3.47
5 3.10 2.91 2.74 2.58 2.45 3.41 3.20 3.01 2.84 2.69 3.63 3.40 3.20 3.03 2.87
6 2.68 2.51 2.37 2.23 2.12 2.94 2.76 2.59 2.45 2.32 3.12 2.93 2.76 2.60 2.47
7 2.37 2.22 2.09 1.97 1.87 2.61 2.44 2.30 2.17 2.06 2.77 2.60 2.44 2.31 2.19
8 2.15 2.02 1.90 1.79 1.70 2.35 2.20 2.07 1.96 1.85 2.50 2.35 2.21 2.09 1.98
9 1.97 1.84 1.74 1.64 1.55 2.16 2.02 1.90 1.80 1.70 2.30 2.15 2.03 1.91 1.81

10 1.81 1.70 1.60 1.51 1.43 2.01 1.88 1.77 1.67 1.59 2.12 1.99 1.87 1.77 1.67
11 1.71 1.61 1.51 1.43 1.35 1.88 1.76 1.66 1.57 1.48 2.00 1.87 1.76 1.66 1.58
12 1.63 1.53 1.44 1.36 1.29 1.77 1.66 1.56 1.47 1.39 1.89 1.77 1.67 1.58 1.49
13 1.55 1.46 1.37 1.30 1.23 1.68 1.58 1.48 1.40 1.33 1.80 1.68 1.58 1.50 1.42
14 1.49 1.40 1.31 1.24 1.17 1.62 1.52 1.43 1.35 1.28 1.71 1.60 1.51 1.43 1.35
15 1.43 1.34 1.26 1.19 1.13 1.56 1.46 1.38 1.30 1.23 1.63 1.53 1.44 1.36 1.29

20 years 25 years 30 years

Li
fe

tim
e

 
Sensitivity analysis against: Lifetime, Efficiency Degradation Limit and Period of Analysis 



76 Lifetime-Adjusted Calculations Based on Life Cycle Costing 
  

technologies, imply frequent replacements.  Long lifetimes are desirable but may tend to 

be more costly [72], as suggested by significantly lower PRF.  The price reduction 

factor reduces from as high as 16 times to approximately 1.5 times as lifetime increases, 

with no significant difference over 10 years lifetime.  On the other hand, longer period 

of analysis lead to higher PRF for a given emerging PV technology lifetime. 

 

This chapter has provided economic and technical boundaries for emerging organic-

based PV technologies.  These systems are likely to come at the expense of efficiency 

and durability.  A methodology, based on LCC, was developed to determine cost 

boundaries for new PV technologies.  Amongst other comparisons with existing PV 

systems, the SR and PRF were estimated on different scenarios.  Preliminary indications 

show that a PRF of one order of magnitude can be achieved from lifetimes greater than 

2 years.  However, 3 to 5 years lifetime was suggested in literature as a feasible 

commercialisation point.  It is important to note that the cost boundaries are for the end-

user BOM costs as described in section 1.2.3 and not for the module cost production.  

Meanwhile, emerging PV technologies may, on balance, be found to have a different 

system rating compared to those systems using mature PV technologies for similar 

energy outputs due to different efficiency degradation limits. 

PV module costs and stability parameters are very useful parameters to researchers and 

manufacturers.  First, low-cost emerging organic-based PV technology should penetrate 

the PV market.  The PV market is presently dominated by more expensive mature PV 

technologies.  Table 3.3 shows the current and future price targets for PV technology 

and an example on how the PRF is used to determine the cost boundary at a certain 

base-date.  For a 30 year system lifetime, 50% efficiency degradation limit, and 5 year 

lifetime, the cost / price boundary for 2020 is between 14 to 17p/Wp, while 2013 it is 20 

to 21p/Wp, refer to Table 3.3.  While today the price boundary for such a scenario is 

lower than 1£/Wp, increasing the durability by higher efficiency degradation limits and 

longer lifetimes may not significantly increase this price upper boundary. 

Understanding future PV cost scenarios is critical to the formulation of public policies.  

It is worth noting that public policies affect the investment outcomes; such as pay-back 

time, and also the RE market with regard to variations in supply and demand chains.  

Hence emerging PV technologies upper price boundaries compared with the current 

commercialised mature PV technologies are crucial to enter the market competitively. 

3.6 Conclusion 
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Table 3.3: BOM costs using PRF for emerging PV technology [73-75] 

Today# 2013* 2020* Today# 2013* 2020* Today# 2013* 2020*

c-Si 3.00 1.35 0.75 2.33 1.05 0.58 0.64 0.29 0.16

a-Si 2.92 0.95 0.65 2.26 0.74 0.51 0.62 0.20 0.14

CIGS+ 3.33 1.00 0.80 2.58 0.78 0.62 0.71 0.21 0.17

~Scenario in for T  - 30 years, δ - 50%, L  - 5 Years, Hence PRF= 3.63
*With reference to EU PV Technology Platform 2007 (a-Si module on glass substrate)
#International PV Spot Market (February 2010) www.pvXchange.com

€/Wp  Average Turnkey PV system BOM cost multiplier
1.98

1.52

1.82

1.36

1.55

BOM Module Labour 2013* Module Labour 2020* Module Labour

0.64 0.48 0.160 0.29 0.22 0.072 0.16 0.12 0.040

0.62 0.47 0.156 0.20 0.15 0.051 0.14 0.10 0.035

0.71 0.53 0.178 0.21 0.16 0.054 0.17 0.13 0.043

BOM Module Labour 2013* Module Labour 2020* Module Labour

0.64 0.63 0.013 0.29 0.28 0.006 0.16 0.16 0.003

0.62 0.61 0.012 0.20 0.20 0.004 0.14 0.14 0.003

0.71 0.70 0.014 0.21 0.21 0.004 0.17 0.17 0.003

^€ to £ using the OECD 2007 Purchasing Power Parity, for 2013 & 2020 estimates and 
OECD 2009 Purchasing Power Parity for Today International PV Spot Market

€/Wp £/Wp^ emerging PV~

Type, Origin
c-Si, Europe

High 
Labour 
Costs 
25% of 
BOM 
costs

Low 
Labour 
Costs 
2% of 
BOM 
costs

c-Si, China

c-Si, Japan

TF CdS / CdTe+

TF a-Si / µ-Si

 1.5-1.9 (~1.7)

 1.8 - 2.5 (~2.15)

Emerging BOM costs in £/Wp considering overhead costs for replacement

Emerging BOM costs in £/Wp considering overhead costs for replacement

 
 

 



 



 

 

 

 

This chapter sets out the first developed cost model for typical hybrid organic-

based QD solar cells which in parallel also analysis an organic PV (OPV) for 

large-scale production with well known components in this field.  Some 

discussions on alternative material components and roll-to-roll high throughput 

manufacturing are performed throughout.  The PV levelised electricity cost (LEC) 

is then described, and comparison has taken place with other sources of 

electricity generation.  Further discussion on the PV LEC grid parity is given 

based on irradiance, BOS costs, BOM costs and lifetime.  Finally, the chapter 

concludes with a discussion on future development promise by emerging PV 

technologies. 

 

When plastic solar cells, or better known as organic PV (OPV), become competitive, 

plastics manufacturers can look forward to large new sales markets.  Hybrid organic-

based QD PV comprises of two different materials, a polymer and a metal oxide.  These 

two materials are blended together.  Charges are created at their interface when the 

blend is illuminated by the sun.  The goal for emerging organic-based PV technology 

producers is to offer flexible and economic film-based PV for novel applications, such 

as Building Integrated Photovoltaic (BIPV) for micro-generation.  So far, the cost of 

manufacturing OPV was studied from a lab-scale scenario without any discussions on 

improve efficiency by using QDs [32, 33].  Hence this is the first developed cost model 

of a typical hybrid organic-based solar cell, which although there is not yet any large-

scale manufacturer, the cost assessment is estimated on mass production of the cells and 

4  

Cost Assessment for Hybrid 

Organic-Based QD PV Module 

4.1 Introduction 
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their component materials.  Further timely discussions are given on grid parity PV LEC 

by emerging organic-based PV technologies and their future development promises. 

 

A recent simplified cost model for OPV was presented [33].  However, the costs for the 

hybrid organic-based QD solar cell are still unknown.  Firstly the material costs are 

discussed, calculated and analysed followed by production and process costs as in 

Figure 4.1.  The material costs are assumed as the material requirements corresponding 

to the solar cell structure while the production and process costs are assumed on capital 

investment, labour and overhead costs.  Some estimates were unable to achieve, and 

hence, general estimates were used instead.  A continuous reference to a typical OPV is 

made throughout to provide a basis for comparison.  Based on the discovered cost 

estimates per square metre, the module cost is calculated in £/Wp under standard test 

conditions (STC) at 1000W/m2 to an assumed efficiency.  This is a comparable metric 

between PV technologies.  However, in order to identify the market viability, an 

average LEC in £/kWh is calculated.  The LEC is dependent on the lifetime, 

degradation, orientation and location of the system, and finances. 

Organic-based solar cells have a similar device structure shown in Figure 4.2.  In the 

next section, the materials costs are investigated, and alternatives to potential material 

uses are discussed.  The substrate can be either glass or plastic.  Plastic substrates  

 

 
Figure 4.1: Cost model for a PV module 

 

4.2 The cost model of organic-based PV module



The cost model of organic-based PV module  81 
   

 
Figure 4.2: The device structure for an organic-based solar cell 

 

provide low cost and flexible PV modules.  The most common transparent conductive 

oxide (TCO) layer is currently indium tin oxide (ITO), however, fluorinated tin oxide 

(FTO) and organic conductors were investigated in the literature and offer a relative 

lower costs and more easily availability.  While OPV have an organic polymer active 

layer, a hybrid version is made from a polymer and inorganic nanostuctures such as 

nanorods and / or quantum dots (QD) which are promised to offer better efficiency 

performance.  The current metal contact, which is silver, may be replaced by an organic 

layer such as VPP:PEDOT or aluminium. 

 

4.2.1 Material costs 

There is a number of potential alternatives that can make up an organic-based solar cell.  

The results summarises the highest and lowest boundaries discovered from the most 

likely material alternatives.  On the other hand, the cost estimates for individual material 

alternatives involved in the device structures are investigated.  These are industry 

estimates based on large quantities of approximately 1Mm2 p.a. (per annum), which is 

what would be required for a 50MW module maker at 5% efficiency on a glass 

thickness of about 3mm. 
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Transparent conductors (TCs) play an important role in the TF PV technologies.  During 

this current rapidly growing use of materials such as tin oxide in ITO or as doped tin 

oxides such as FTO, the TCs materials are of comparable importance to the solar cell 

active materials.  Hence such materials, as always, will follow traditional supply-

demand economics, and the drive to produce competitive and advantageous alternatives 

may be required.  There are currently four potential alternative TCO layers and two 

potential substrates.  The potential substrate may be either glass or flexible substrate, 

such as PET, coated with a TCO layer.  Depending mainly on the substrate, the four 

potential alternatives TCs, are ITO, aluminum-doped zinc oxide (AZO), FTO and 

organic TC.  Examples of organic TCs are VPP:PEDOT (vapour phase polymerisation 

(VPP) of PEDOT (Poly(3,4-ethlenedioxythiophene))), highly conductive PEDOT:PSS 

(PSS is Poly(4-styrenesulfonate), a polymer used as dopant for PEDOT) or Polyaniline 

(PANI).  Other alternatives, which were discussed in the literature include the use of 

carbon nanotubes [76], graphene [77] and a variety of other nano-engineered materials 

such as the use of nanoparticles and nanowires dispersed in a binder; and a variety of 

nanostructures: nanodots, nanowires and nanoplates based on indium or zinc oxides 

[78]. 

At the moment, the price for TCs is mainly dependent on the process and its market, 

rather than its reserve.  ITO is one of the most costly TCO.  Hence may not be preferred 

by today's most common thin-films on the market.  However, it is dominantly used for 

LCD displays and within the OPV research field [78].  In addition, ITO is not stable at 

high temperature [79].  The process may still require around 300oC during deposition 

though room temperature depositions are found in literature [80]. 

FTO is the cheapest, used by First Solar on the CdTe thin film PV modules, as it is 

usually deposited as part of the glass manufacturing process with required deposition 

temperatures of around 500oC, which makes this TCO restricted to be used on glass 

substrates only [81].  AZO slightly more expensive than FTO, is the preferred TCO for 

CIGS thin-film PV modules [82].  Usually, AZO requires a temperature deposition 

between 300 to 350oC.  However, AZO can be controlled for roughness which may 

improve solar cell efficiency.  AZO is sputtered deposited followed by etching, in 

hydrochloric acid, to create a rough surface texture.  However, AZO room temperature 

deposition process can also be found in literature [83]. 

All three alternatives can produce similar electrical characteristics and durability.  

However, with any organic-based solar cell there could be some concerns about the 
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work function between the layers.  So an interlayer may need to be deposited between a 

basic TC and the active layer [84-87].  Besides these oxides’ cost factor, these TCO are 

fairly brittle, and thus are not likely suitable for flexible application [88].  In addition, 

flexible substrates cannot withstand high temperatures above 150oC [89].  Hence 

conductive polymers such as PEDOT and other ‘nano’ alternatives are in parallel 

development [90]. 

Using a flexible substrate coated with TC can reduce costs from a glass substrate.  

Flexible substrates may become the key for wider PV applications.  Based on current 

commercial available flexible substrates, the cost for a roll to roll flexible plastic 

substrate is assumed £3/m2.  On the other hand, based on cost estimates for ITO coated 

flexible plastic substrate [62], the process costs for a TCO deposited on a flexible 

substrate is taken at £0.30/m2.  The minimum cost estimates of ITO on glass substrate is 

taken as the maximum boundary for ITO on flexible substrate ones. 

From Aldrich catalogue, ITO costs £1.95/g.  Assuming 1g/m2 of ITO is required (that is 

£1.95/m2), and using the estimates for flexible substrate and process costs; an optimistic 

estimated cost for ITO-coated flexible plastic substrate is in (4.1): 

 

 2 2 2 2
cost £3.00 / m  £1.95 / m  £0.30 / m  5.25£ / mITO = + + =  (4.1) 

 

Meanwhile, the cost estimate for AZO-coated flexible substrate is based on the 

aluminium doping on zinc oxide TF produced by pulsed laser deposition for organic 

LEDs [91].  From Aldrich catalogue, Zinc Oxide Hydrate costs £1.009/g, and 

Aluminium Oxide Hydrate costs £0.00552g.  Assuming a 1g/m2 usage and similar 

process cost of ITO at £0.30/m2.  Having 98:2 mixture, the approximate cost of TCO is 

£1.00/m2 (£0.98882/m2 + £1.104e-4/m2).  This makes the final estimated cost for AZO-

coated flexible substrate as in (4.2): 

 

 2 2 2 2
cost £3.00 / m  £1.00 / m  £0.30 / m  4.30£ / mAZO = + + =  (4.2) 

 

As mentioned earlier, organic TC is an economic substitute as an electrode which is also 

more resistant to cracking on bending and more easily used in printing processing 

methods.  The total material cost for a VPP:PEDOT organic TC is £0.60/m2, based on 

the deposition of VPP:PEDOT on glass substrate of 40nm thickness [92].  The cost was 

derived from Aldich catalogue with Isopropanol at £0.05/ml, Pyridine at £0.06/ml and 
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an assumed Fe(OTs)3 (iron(III)-p-tosylate) at £0.10/ml, having a ratio of 125:1:25 

respectively and small drops of EDOT (3,4-ethylenedioxythiophene) at £148.6/g.  

EDOT price is also expected to go down once demand and supply are scaled up.  

Considering that process costs are twice as much as basic TCOs, at £0.60/m2, the final 

estimate for a VPP:PEDOT on a flexible substrate is in (4.3): 

 

 2 2 2 2
cost: £3.00 / m  £0.60 / m  £0.60 / m  4.2£ / mVPP PEDOT = + + =  (4.3) 

 

Based on the difference between the industrial minimum cost estimates of TCO on glass 

and minimum cost estimates on flexible substrates, a factor of 10 is added to estimate 

the maximum boundary for an organic TC on a flexible substrate which is the minimum 

cost estimate on glass.  Another factor of 10 provides the cost estimate maximum 

boundary for an organic TC on glass. 

There are a number of options for semiconductor materials that can be used in an 

organic-based solar cell for an OPV or a hybrid-OPV.  The active layer costs estimates 

are based on the most common form of OPV made from P3HT (Poly (3-

Hexylthiophene)) and PCBM (Phenyl-C61-butyric acid methylester).  These materials 

have already resulted in reasonable module efficiency of around 3% on commercial 

scale of OPV modules and are considered as the cheapest polymer materials so far.  

Today the commercial-grade product for P3HT can be estimated at around £90/g and 

PCBM at £78/g (€2009100/g for C60 derivative) for 10 to 15kg orders [93].  Meanwhile, 

the active layer for the hybrid solar cell is considered with P3HT polymer and PbS (lead 

sulphide) QD.  As prices for PbS QD are unavailable, CdSe QD prices are assumed.  

From an industrial communication on CdSe QD, the manufacturer price is currently 

around £100/g for bulk powder quantity over 25kg.  Assuming a mass production scale-

up for the above materials in the emerging PV technology market the costs are 

estimated to go down by one order of magnitude, leading to P3HT at £9/g, PCBM at 

£7.8/g and QD at £10/g. 

The active layer is assumed 1:1 blend of either P3HT with PCBM, for OPV, or a blend 

of P3HT with PbS QD, for hybrid-OPV.  Assuming a plausible 25% material wastage 

during printing processes for a 200nm thickness of active layer, equivalent to 0.1cm3 for 

1m2, the active layer cost is estimated in (4.4).  The material densities are assumed at 

1.5g/cm3 for P3HT, 1.11g/cm3 for PCBM and 7.5g/cm3 for PbS QDs. 
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3 3 2
cost

3 3 2
cost

3 3 2
cost

3 0.1cm *  1.50g / cm *  £9.0 / g *  1.25  £1.688 / m

0.1cm *  1.11g / cm *£7.8 / g*  1.25 £1.082 / m

0.1cm *  7.50g / cm *  £10 / g *  1.25  £9.375 / m

P HT

PCBM

PbS QDs

⎫= =
⎪

= = ⎬
⎪= = ⎭

 (4.4) 

 

Hence the total active layer cost estimates are £2.770/m2 for OPV, and £11.063/m2 for a 

hybrid-OPV.  These estimates are taken the highest.  Thinner active layers of 50nm may 

reduce the active layer cost by a factor of 4.  However this may reduce the efficiency the 

cell and hence the layer thickness needs to be optimised for the particular process 

technologies.  One should note that these estimates are based on a full scale-up 

production of materials as stated above and therefore, are significantly lower than 

current costs. 

Similar to TC there are four main potential alternatives for back electrodes.  Three of 

these are based on metals aluminium, silver and gold.  The latter is not widely used 

mainly due to high costs.  The other alternative is an organic conductor, such as the 

PEDOT:PSS or VPP:PEDOT, the latter is the basis for calculation at £0.60/m2, 

calculated above.  Based on a ratio of 46.4% active area with respect to module size for 

large-area OPV fabrication [94], and assuming 150nm metal electrode thickness, the 

maximum total volume required per m2 is estimated at 0.0696cm3.  Hence, assuming 

metal density of 2.7g/cm3 for Aluminium, and 10.49g/cm3 for Silver, with a cost price at 

£100/kg and £950/kg respectively, the potential electrode cost estimates are in (4.5): 

 

 

3 3 2
cost

3 3 2
cost

2 2
cost

Aluminium   0.0696cm *  2.70g / cm *  £100 / kg / 1000g  £0.019 / m

Silver   0.0696cm *  10.49g / cm *  £950 / kg /  1000g  £0.694 / m

Organic   46.4% *  £0.6 / m  £0.278 / m

⎫= =
⎪

= = ⎬
⎪= = ⎭

(4.5) 

 

For metal electrodes, thinner layers, approximately half of the estimate, were reported in 

the literature.  Hence, the lower boundary is a factor of 2.  One should note that, for the 

organic electrode, the same thickness was estimated on the TC estimates above.  Hence 

its value was estimated on the percentage of the active layer in one module. 

Interlayers match the work functions between the active layer and the electrodes which 

make the solar cell operate far more efficiently.  Though interlayers may not be required 

for organic conductors, interlayers costs are added for consistency with the schematic 
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structure in Figure 4.2.  The interlayer PEDOT:PSS may be useful for planarising or 

smoothing effect in the device between the active layer and the TC, while calcium (Ca) 

or lithium fluoride (LiF) interlayer between the active layer and electrode may improve 

the electrode selectivity.  The cost estimate for PEDOT:PSS is based on the HC Starck's 

Clevios P VP AI 4083 at £999 per litre for small quantities.  Assuming large quantities 

and full scale-up production the PEDOT:PSS is assumed at £9.99.  Less than 0.333l is 

required for approximately a 40nm thickness on a 1m2 substrate.  Hence the cost for 

interlayer between TC and active layer is estimated at £3.33/m2.  An automated 

industrial process may decrease the amounts required, from spin coating process, by a 

factor of 2, giving a minimum cost estimate of £1.67/m2.  Meanwhile for Ca or LiF, 

taken as the lower and higher boundary respectively for this interlayer, the cost 

estimates in (4.6), are based on Sigma Aldrich Catalogue and 60nm thickness with a 

46.4% active area in a 1m2 module.  The maximum total volume required per m2 is 

estimated as 0.0276cm3. 

 

 
3 3 2

cost
3 3 2

cost

Ca  =  0.0276cm *  0.63g / cm *  £0.148 / g     £0.003 / m

LiF  = 0.0276cm *  2.64g / cm *  £0.281/ g     £0.020 / m

⎫= ⎪
⎬

= ⎪⎭
 (4.6) 

 

An ethylene vinyl acetate (EVA) of 0.5mm thickness encapsulation is estimated 

between £1.78/m2 to £3.56/m2.  Special chemicals may be required similar to those used 

in inorganic thin films, due to the instability problems with respect to degradation of 

polymer materials, estimated between £1/m2 to £2/m2
 [33]. 

A summary of the above estimated costs is given in Figure 4.3.  Table 4.1 shows the 

direct comparison between OPV and hybrid-OPV.  All estimates are based on a 

production scale-up.  The active layer for hybrid version constitutes to about 20%-24% 

of the total cost compared to 5%-6% for OPV.  The substrate for these organic-based 

solar cells is still the largest portion of the device costs.  For glass substrate the device 

cost share is 73%, while for flexible substrate it is 36%.  Meanwhile, it is easily 

noticeable that flexible substrate is less expensive than glass.  Therefore, the total device 

cost for a hybrid-OPV may range between £11.43/m2 and £53.67/m2 compared to OPV 

that may range between £9.36/m2 and £45.37/m2.  The OPV estimates are comparable  

 
[95] 
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Table 4.1: Comparison of material costs estimates for OPV, hybrid OPV and TF PV  

Component

Min Max Min Max Min Max
TCO coated substrate 4.20 33.00 4.20 33.00 6.60 16.51
Interlayer 1.67 3.33 1.67 3.33 1.98 6.60
Active Layer 0.58 2.31 2.77 11.06 1.32 33.01
Interlayer 0.01 0.05 0.01 0.05 1.98 6.60
Back Electrode 0.01 0.69 0.01 0.69 5.28 9.90
Adhesive and Encapsulation 1.78 3.56 1.78 3.56 0.00 5.28
Special Chemicals 1.00 2.00 1.00 2.00 1.32 9.90
Total 9.25 44.94 11.44 53.69 18.49 87.81

Cost (£2009/m2) [95]Cost (£/m2)Cost (£/m2)
Organic Solar Cell Hybrid Solar Cell Thin Film Solar

 
 

0

5

10

15

20

25

30

IT
O

ZN
O

FT
O

O
rg

an
ic

IT
O

ZN
O

FT
O

O
rg

an
ic

PE
D

O
T:

P
SS

P
3H

T

P
C

BM Q
D

C
a 

/ L
iF

Si
lv

er

A
lu

m
in

iu
m

O
rg

an
ic

E
VA

C
he

m
ic

al
s

Glass Flexible Substrate

Transparent Conductor on Substrate Active Layer

Device Materials

£/
m

2

Back 
Electrodes E

nc
ap

su
la

tio
n

S
pe

ci
al

In
te

rla
ye

r

In
te

rla
ye

r

1:1 Blend

 
Figure 4.3: Cost estimates indication of all potential materials under investigation 

 

with the basic cost model by Kalowekamo and Baker (2009) [33].  This model estimates 

OPV device costs between £15.82/m2 and £16.55/m2 ($23.4/m2 to $24.48/m2)2. 

TF PV technologies have several materials in common even though some are used for 

different purposes such as back contact, interlayer, active layer or TCO.  Of interest, 

Indium (In) is used both as a TCO in ITO or absorber layer in CIGS devices.  As 

discussed above, In appears likely to be scares and hence bears some price concerns.  A 

number of studies have already looked at material constraints issues for PV technologies 

development, ranging from c-Si and various mature inorganic and emerging organic-

based TFs [12-17].  Collectively these studies identify In and tellurium (Te) as the main 

threat to TF PV deployment technologies, specifically to CdTe and CIGS TF.  A recent 

                                                 

2 US dollar converted to pounds using OECD 2008/9 Purchasing Power Parity. 
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study has also compared common materials typical usage figures for each TF PV 

technology (Figure 4.4).  Despite the In future price and/or availability uncertainty, 

several alternatives like efficiency increase, lower thicknesses and material substitutions 

are discovered to reduce any impact of any critical materials on TF PV developments 

[59]. 

 

4.2.2 Production and process costs 

Apart from low material usage, TF PV technologies have the potential for substantial 

cost advantage against c-Si due to the potential application of simpler manufacturing 

process.  Commercial mature inorganic TF PV technologies employ a number of 

different deposition techniques such as physical vapour deposition, chemical vapour 

deposition, electrochemical deposition, or a combination.  All these deposition 

techniques are less expensive than the ingot-growth techniques required for c-Si. 

A simple, low-cost manufacturing process and low-temperature in air process are a 

common desire in TF PV.  Apart from making the process cheaper to operate, it enables 

the use of less expensive flexible substrates as this may become a major expense for TF 

technologies.  Hence the ideal method of manufacturing may resemble that of printing 

presses by depositing patterned electrodes and semiconductors on rolls of plastic or 

metal substrate in a continuous roll-to-roll process.  This process does not involve high 

temperatures and high vacuum depositions.  Two of TF commercial providers have 

 

Figure 4.4: TF technology comparison on common material content [59] 
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already applied this concept in their production processes such as Nanosolar for CIGS 

[96] and Uni-Solar for a-Si [97].  The latter has provided a-Si flexible modules for a 

number of years.  CdTe is also deposited on low-cost flexible substrates such as 

stainless steel [98].  Other companies such as Heliovolt are also developing ink-based 

processes for simpler, higher throughput and low-cost PV manufacturing [99].  Even 

though today most TF technology companies do not have online roll-to-roll processes, 

some has already established low manufacturing costs, such as First Solar.  PV modules 

on a flexible substrate may reduce installation / original material costs which bring an 

added value to the investor. 

Organic-based semiconductors already offer the capability to fabricate electronic device 

at low temperature and on various large area flexible substrates such as plastic and 

paper.  Organic-based PV technologies fabrication and processing on printing and 

coating techniques are currently being studied [100, 101].  Speeds of up to 1000m per 

minute can be achievable which has potential of significant manufacturing costs 

reductions.  The advantage that is already realised by industry and research institutions 

is that organic-based solar cells may be dissolved in ordinary solvents, and sprayed or 

printed onto substrates from solutions at or near room temperature.  However before 

reasonable market penetration some issues need to be addressed.  These include the 

stability enhancement of conjugate polymers, and higher conversion efficiency, 

matching the bandgap of suitable blended/composite polymers and dyes. 

Hybrid organic-based PV modules may potentially exhibit common process steps as 

OPV modules.  Except the nanoparticles synthesis and annealing, all processes of 

hybrid solar cells are relatively considered being similar to OPV modules.  These 

nanoparticles synthesis and annealing may require a slightly higher temperature 

processes.  The advantage with flexible substrates, for example roll-to-roll production, 

is that of a greater output production.  At present Konarka is the only company, to the 

author’s knowledge, that has a commercial up-scale for OPV with around 1GW facility 

[60]. 

It has already been demonstrated that the slowest roll-to-roll fabrication of OPV is the 

PEDOT:PSS deposition and slot die coating and layer drying at 18m/h [102].  Hence 

with a roll width of 305mm 24/7 production, a 2GWp is reachable for 5% module 

efficiency (131.76m2/day = 48,092.4m2/year = 2.4GWp/year).  This will bring costs 

significantly down by a factor of over 200 within the production and process costs, 

when compared to typical installed thin-film manufacturing 10MW plants, based on 
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glass substrates.  Hence a 100 times faster production speed is assumed giving a 

reasonable ratio of 100. 

Currently there are no mass produced hybrid organic-based QD PV.  Hence estimates 

for process costs are based on the available industry equipment and literature on the 

mass production of TF manufacturing plants, 10MW in size, which mostly produce 

solar modules on glass substrate.  These estimates are then extrapolated, by this factor 

of 100, to represent the high throughput on flexible substrates. 

From the literature, the estimated capital cost of equipment for PV manufacturing can 

range from $0.5M to $5M per megawatt capacity [28].  Assuming a 10MW plant, 5% 

efficient solar modules, plant lifetime 7 years and discount rate 7%, the annualised cost 

for a 10MW plant is £0.61M to £6.14M.  A yearly production based on 10MW plant is 

equivalent to 200,000m2 (10MW / (1000W/m2 * 5%)).  Therefore, the capital costs 

estimates are £3.05/m2 (£0.61M/200000m2) to £30.00/m2 (£6.14M/200000m2). 

Labour cost estimates are important, though their significance in the whole cost model 

is minimal.  Labour cost in Booming Economies such as China and India can be about 7 

times lower than Western Countries in EU and US.  There is still an uncertainty on the 

true amount of labour needed when processes are not well known.  Hence based on 

previous derived labour costs for OPV [33], labour cost estimates 30 people, 8h/day, 

350days/year at £11.50/hour ($17/hour3), the estimated labour cost is (£966000/year) / 

200000m2 = £4.83/m2.  While this estimate is the minimum, the maximum estimate is 

taken based on the 20MW/year First Solar CdTe manufacturing model at £8.10/m2 

($12/m2).  Therefore, the labour cost estimates range between £4.83/m2 to £8.10/m2. 

The overhead costs in production and process costs are based on the simple cost model 

for OPV which included facility renting, utilities, maintenance, miscellaneous and 

customer warranty costs [33].  The miscellaneous costs, assumed as research and 

development costs, and warranty were taken at a high percentage at 5% due to the 

technical developments and early high prices in the market.  The maintenance cost is 

taken at 4% of capital cost per year.  In general, facilities and utilities for both OPV and 

hybrid organic-based QD PV are expected to have similar manufacturing processes. 

 

                                                 

3  US Dollar converted to Pounds using the OECD 2008/9 Purchasing Power Parity 
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4.2.3 Estimated cost of PV module 

Table 4.2 presents a summary of manufacturing, production, process and device costs.  

For easy comparability with other PV cost estimates in literature.  A 95% cell yield is 

used.  The cost estimates for a hybrid organic-based PV on glass substrate will range 

between £36.50/m2 and £103.56/m2.  Considering a higher throughput when using 

flexible substrate, the cost estimates will range between £13.37/m2 and £40.84/m2.  

This is slightly higher from OPV that range between £34.10/m2 and £93.97/m2, and 

£10.98/m2 to £31.26/m2 for glass and flexible substrate respectively. 

For ease of comparability, considering a 98% module yield and a 2012 future OPV 

target of 5% module efficiency [33, 40, 103], the above organic-based module cost is 

calculated using (4.7): 

  

manufacturing
module

1.02

STC PV

C
C

H η
⋅

=
⋅  (4.7) 

 

Hence the module cost estimates range between £0.22/Wp and £2.11/Wp. 

 

Table 4.2: Summary of total cost estimates for OPV and hybrid OPV 

Cost Component

min max min max min max min max
Device Costs 15.16 32.37 9.36 26.57 17.24 40.67 11.44 34.87

Production and Process Costs
Capital Costs 3.05 30.00 0.03 0.30 3.05 30.00 0.03 0.30
Labour 4.83 8.10 0.05 0.08 4.83 8.10 0.05 0.08
Facilities 4.90* 6.86* 0.05 0.07 4.90* 6.86* 0.05 0.07
Utilities 1.47* 2.94* 0.01 0.03 1.47* 2.94* 0.01 0.03
Total Manufacturing Costs 29.41 80.27 9.50 27.05 31.49 88.57 11.58 35.35

Maintenance Cost 0.12 1.20 0.00 0.01 0.12 1.20 0.00 0.01
(4% of Capital)
Warranty Cost 1.47 4.01 0.48 1.35 1.57 4.43 0.58 1.77
(5% of Manufacturing Costs)
R&D 1.47 4.01 0.48 1.35 1.57 4.43 0.58 1.77
(5% of Manufacturing Costs)
Total Costs 32.47 89.50 10.46 29.77 34.76 98.63 12.74 38.89

Total Cost 34.10 93.97 10.98 31.26 36.50 103.56 13.37 40.84
with 95% cell yield

^ 10MW annual production plant is assumed for glass substrate, while on flexible substrate a 1GW 
annual production plant is assumed

* US Dollar converted to Pounds using the OECD 2009 Purchasing Power Parity

Estimates of Hybrid OPV (£/m2)
Glass^ Flexible^

Estimates of OPV (£/m2)
Glass^ Flexible^
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From Table 4.2, it is clear that the device costs constitute the largest part of the total 

module costs in most cases except for high end cost estimates on glass substrate.  

Hence, it is also clear that production and process costs will not significantly impact 

module costs on a flexible substrate. 

As described in the previous chapter, cost competitiveness with respect to energy output 

performance over a system lifetime is critical for on-grid domestic environment PV 

market penetration.  Figure 4.5 compares the cost estimates for different PV 

technologies in literature.  This study investigates four cost estimates of emerging PV 

technologies, based on glass and flexible substrate, for OPV and potential future hybrid-

OPV.  The data in the literature is drawn from previous comparable work, assuming cell 

yield of 95% and module yield of 98% [33]. 

Commercial TF technology modules are currently cheaper than c-Si to manufacture, 

with CdTe modules manufactured at 0.98$/Wp by First Solar.  Target cost reductions of 

around 0.5€/Wp are deemed achievable by around 2020, provided that the expected 

increase in the production facility sizes and improvements in efficiencies are realised 

[29-31].  The cost estimate in this study is comparable with previous DSSC and OPV 

cost estimates.  On the other hand, flexible substrates offer a significant cost reduction 

by increasing the throughput in production.  However, there is still uncertainty in the 

process and device costs due to lack of knowledge in the process on industrial scale-up 

 

 
Figure 4.5:  PV technologies cost estimates comparison [33, 104, 105] 
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and economics of scale in relation to material costs.  This uncertainty is shown by a 

wide range in the cost estimates. 

 

4.2.4 Estimated cost of PV electricity 

The Levelised Electricity Cost (LEC) is estimated on the model in Figure 4.6.  The 

model does not consider operation and maintenance costs.  The BOS costs include area 

and energy related costs for a complete system.  In this case system installation costs are 

considered as part of the BOS costs.  On the other hand BOM costs include module 

costs and overheads.  The overheads include the installation or replacement of modules 

within the system.  A cost margin for replacement costs may be considered within the 

BOM costs as discussed in sections 3.5 and 3.6.  This replacement cost is still unknown 

on the market as this approach has not been realised in a real world application.  

However one may consider high replacement costs to low replacement costs depending 

on the module fixing design and procedures.  Hence for simplicity in the calculation 

below the BOM costs is taken as the module estimated cost in section 4.2.3 without 

profit margins or overhead costs.  Equity for capital costs are not considered, in order to 

have a true picture of the LEC incentives.  These BOM and BOS cost indicators on the 

system level has already been defined in section 1.2.3. 

The LEC is calculated by annualising the life cycle investment cost (LCIC) divided by 

the annual PV energy output as in (4.8).  The annualised LCIC is the product of the 

LCIC which is the total system cost over its life cycle and the capital recovery factor 

(CRF). 

  
PV

LCIC CRFLEC
E

⋅
=  (4.8) 

where: 

CRF is calculated as in (4.9) using inputs 2 and 3: 

  (1 )
(1 ) 1

T

T

r rCRF
r
+

=
⎡ ⎤+ −⎣ ⎦

 (4.9) 

EPV is calculated in (4.10) similarly as in section 3.4.1 using inputs 5, 6 and 7 from the 

model: 

  ( )(1 ) 2
21PV yr PVE H PR 1mδη −= ⋅ ⋅ − ⋅ ⋅  (4.10) 
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Oval boxes represent scenario input data and rectangular boxes indicate steps in the calculations. 

Figure 4.6: Calculation of the Levelised Energy Cost (LEC) 

 

and, LCIC is calculated in (4.11) similarly as described in section 3.4.1 using inputs 1, 

2, 3, 8 and 9 from the model: 

  
( )

1

0 1

ePVT
adjPV BOM

BOM BOMt
t

CostLCIC Cost Cost
r

α−

=

⋅
= + −

+
∑  (4.11) 

where: 

t is studied year 

PVα  = 1 if replacement of PV module is needed, otherwise PVα  = 0 

and,  ( ) ( )1 1NLadj ePV T NL
BOM BOM LCost r Cost− −⎡ ⎤= + ⋅ × −⎣ ⎦  (4.12) 

where N is the number of replacement during systems’ lifetime, calculated in (4.13): 

  ⎡ ⎤= ⎢ ⎥⎢ ⎥
TN
L

-1 (4.13) 

assuming a 7% discount rate and 30 year system lifetime. 
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The PV system is assumed to have a PV module degradation of 50% by the end of life, 

a 5% module efficiency, a performance ratio of 0.85 to estimate the total system energy 

output with respect to its peak power rating and a low BOS cost estimate of £30/m2.  If 

we consider lifetime of the PV module same as system lifetime and installed at a site 

having average annual radiation of 1000kWh/m2, the LEC estimates for OPV range 

between 15.42p/kWh and 36.40p/kWh, while for hybrid-OPV range between 

16.42p/kWh and 38.82p/kWh. 

Figure 4.7 shows the LEC range for the estimated OPV and hybrid-OPV in comparison 

with other electricity sources.  These energy costs are not favourable against current 

centralised power stations and wind energy.  While the lower estimate exhibits a 

reduction in PV electricity by more than twofold, the upper estimate may be similar to 

current PV technology status.  In addition, these emerging PV technologies may require 

frequent replacement throughout the system lifetime, making them highly costly if 

efficiency and lifetime is not increased. 
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Based on 2004 report [106], for Solar [7] and the Authors’ cost estimates for OPV and hybrid PV. 

Figure 4.7: The electricity generation costs of the power plants in UK 
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4.2.4.1 Sensitivity on LEC results 

Apart from the module cost, the LEC is sensitive to the module efficiency, lifetime, 

irradiation and BOS cost.  A BOM cost baseline of £50/m2 is considered for the 

contours plotted in Figure 4.8.  The impact of efficiency and lifetime on the LEC is 

most noticeable when lifetime is short as seen in Figure 4.8 (a).  In fact, for a LEC 

lower than 10p/kWh, the PV module boundaries for the assumed system are around a 

10% module efficiency and 5 year lifetime.  As one expects in Figure 4.8 (b, d and f), 

higher available irradiance reaches competitive LEC even with lower performances of 

efficiency and lifetime, although greater than 10%, 10 year lifetime seems to reach close 

to the electricity cost from other electricity sources.  Meanwhile, Figure 4.8 (c and e) 

shows the BOS cost exhibits a fixed impact and is mainly driven by PV module 

efficiency rather than lifetime. 

 

 
The system lifetime is assumed 30 years, 50% efficiency degradation, 7% actual discount rate. 

Figure 4.8:  PV levelised electricity cost £/kWh for a BOM cost at £50/m2. 
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Similar to the sensitivity on LEC, the BOM cost sensitivity establishes the boundaries 

for integrating emerging PV technologies by suggesting BOM cost with respect to the 

module efficiency, lifetime, irradiation and BOS cost.  Figure 4.9 illustrates the BOM 

cost contours in £/m2.  The 0 contour indicates the lower boundary.  The baseline for 

grid parity was taken at 13.97p/kWh based on the 2009 Energy Statistics [107].  The 

average annual domestic electricity bill was £461 based on annual consumption of 

3,300kWh. 

The impact of efficiency and lifetime on BOM cost is again most important.  Lower 

efficiency, lower lifetime require low BOM cost for grid parity as seen in Figure 4.9 (a).   

 

 
The system lifetime is assumed 30 years, 50% efficiency degradation, 7% actual discount rate. 

Figure 4.9:  BOM cost contours in £/m2 

4.3 Discussion on PV LEC grid parity on BOM costs
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On the other hand, as shown in Figure 4.9 (c), BOS cost higher than £50/m2 cannot 

reach grid parity with 5% efficiency modules, while this boundary is relaxed as module 

efficiency is improved as seen in Figure 4.9 (e).  Meanwhile, the available solar 

irradiance also impact BOM cost with respect to efficiency, lifetime and BOS costs; as 

illustrated in Figure 4.9 (b, d and f). 

 

Moving forward, the debate of whether or not emerging organic-based PV technologies 

require a same lifetime of over 20 years as current mature PV technologies is ongoing.  

Certainly amongst emerging organic-based PV technologies similar lifetime and 

performance levels may be necessary.  Hence for very low-cost modules, short lifetime 

is deemed acceptable as seen in previous sections.  In fact, this is the direction taken by 

some companies such as Konarka.  On the other hand, investors may be less likely to 

support technology with low efficiency and low lifetime. 

The target for OPV technology is to increase from a lifetime of 5 years in 2012 to 

almost three times as much in 2020, around 13 years [40, 103, 108].  This target is the 

reference scenario.  Hence in Figure 4.10: 

- The reference scenario depicts the targets of OPV and uses them as boundaries 

for the case which settles at around 25 years after 40 years 

- The optimistic scenario follows the optimistic targets and continues to improve 

at a rate which settles at around 30 years in 40 years time, and 

- The pessimistic scenario follows a growth rate from 1 year lifetime and settles 

at around 15 year lifetime in 40 years. 

The overall efficiency of conversion of irradiance into electrical energy of a system 

could be minimum 60% of the efficiency of a laboratory cell [109].  Figure 4.11 

illustrates the progress achieved in the efficiencies of c-Si and TF PV modules 

respectively in the past. 

The progress gradient of a-Si between 1981 and 1990 was 0.33.  Currently, OPV 

efficiencies are increasing at about 1 percent per year.  The goal is to improve device 

efficiency to 14% for solar cells and 10% for modules by 2020 [40, 103].  As in the 

previous section, the goal for these devices is to increase cell efficiency and lifetime / 

stability levels from 5% for 2,000 hours to 10% per 10,000 hours by 2020.  This means 

a PV module life expectancy of more than five years in 2012 and 13 year lifetime in 

2020 [108]. 

4.4 Future development promise discussion
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Figure 4.10: Lifetime trends scenario entails stability of emerging PV technologies 
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Figure 4.11: The progress achieved in PV module efficiencies [109] 

 

Hence in Figure 4.12: 

- The reference scenario depicts the targets of OPV, 
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- The optimistic scenario follows the relation between lab-cells efficiency and 

commercial module efficiency and assumes lab-cell efficiencies to reach 

theoretical maximum efficiency in 40 years time, and 

- The pessimistic scenario follows a linear increase from 1 percent efficiency in 

anticipation of a steady growth in efficiency as predecessor a-Si modules. 

A model to predict the price of emerging PV technologies is based on coupling the 

exponential growth rate in PV production and the learning curve for PV technologies.  

Most forecast studies use an exponential growth which is in the form as in (4.14): 

  ( ) ( )ln 11 t t g
O Om m g m e += + =  (4.14) 

where m is the annual market, t the time in years and g is the annual growth rate. 

 

Figure 4.13 shows the exponential growth rate at 25%, 30% and 40% on the actual 

annual production.  The current best fit, minimum least square error, is at 37%. 

Future market expectations are assumed to have a 25% growth in PV after 2010 [110].  

Starting from 10GW in 2010, one may expect 8TW in 2040, about half the estimated 

14TW of carbon free energy needed by 2050 [111]. 
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Figure 4.12: Emerging PV efficiency trends scenario entails technology progress 
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Up to the third quarter figure for 2009 

Figure 4.13: The historic growth rate of PV production 

 

The historic development of module prices shows an experience factor of around 20% 

[112].  This means a 20% price reduction for each doubling of cumulated volume of 

sold modules globally.  This is in analogy to the learning factor derived from cost 

learning curves as in (4.15): 
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 (4.15) 

where p is the price at a given M cumulative sale; and pO and MO are the price and 

cumulative sales (referring as the production) at the initial moment; and pr is the 

progress ratio and f is the learning curve (experience curve) 

 

So far the progress ratio of 80% has been more or less constant, even though there have 

been an increasing favourable number in the PV support scheme contributions from a 

number of countries.  However as the contribution of material cost relative to the total 

manufacturing cost will increase with economy of scale, the experience factor will most 

probably decrease. 
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The recent interest in new product ideas and additional market segments was illustrated 

on one possible scenario.  The three main PV technology categories c-Si, TF and new 

concept (NC) for emerging technologies, could grow in parallel, and contribute to the 

overall expected market increase, with an approximate  25% growth rate, as shown in 

Figure 4.14 [110].  A growth rate of over 30% is depicted for both TF and NC.  In fact, 

a recent study shows that with a growth rate greater than 30%, a TF PV system reaches 

the break-even point of 1$/Wp before c-Si.  Also the cost gap and social investment will 

be lower with TF PV systems [95]. 

As seen in the previous section, for a scale-up approach, OPV will range between 

£10.98/m2 and 93.97/m2, while a hybrid-PV module may cost between £13.37/m2 and 

103.56/m2. 

Figure 4.15 displays the three progress ratio scenarios under consideration, assuming 

commercialisation emerging PV module price at baseline cost price of 50£/m2: 

- The reference scenario depicts a realistic scenario for a complete price-cost 

cycle for market introduction of a new product.  In fact, a viable technology 

has four phases in this cycle as seen in Figure 4.16: 

i. Development - initial producer setting prices below cost to establish market.  

A typical progress ratio at this stage is 90% or more. 
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Figure 4.14: One possible scenario of different PV technologies growth rates [110] 
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Figure 4.15:  Emerging PV experience curve projections 

 

 
Figure 4.16: Price-cost relations for a new product [113] 

 

ii. Price Umbrella – learning by doing, cost reduces.  In this stage, more 

competitors may enter the market with lower costs, while the difference 

between price and cost becomes larger. 

iii. The Shakeout - when prices fall faster than the cost.  A typical progress ratio 

is around 60%.  This may be assumed following a target, such as 5 year 
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lifetime or market growth doubles.  In the case of the reference scenario in 

this research, this shakeout is assumed after 5 years. 

iv. Stability – is reached when the price and cost stabilise with the same 

progress ratio, and defines a stable market.  An 80% progress ratio on cost 

may be assumed. 

- The optimistic scenario follows the progress ratio of 80% on price of PV 

immediately at market entry-point.  A PV module price extrapolation study 

shows the overall learning curve of PV technologies discontinues when the 

advantages of TF and NC technologies are realised, and their deployment 

increase heavily.  Though this breakthrough is suggested to be noticed beyond 

2020, TF and NC technologies can accumulate the experience learned from c-

Si technology.  Hence this experience will not affect the learning curve of the 

individual PV technologies [114] 

- The pessimistic scenario follows a price increase to provide for the first market 

entrants with an opportunity to recover development costs, as well as efficiency 

improvements.  This reflects the market power of the first producers of these 

emerging PV technologies.  It also increases the customer valuation of the 

product due to increased technical performance such as efficiency and lifetime. 

 

This chapter has estimated the costs on a scale up production for OPV compared to 

hybrid organic-based QD PV, depicting the two emerging PV technologies.  Although 

cost estimates for hybrid organic-based QD PV will range a bit higher than OPV, these 

advanced TF technologies using QD are expected to have better performance than OPV 

ones as discussed in section 2.6.4.  The cost estimates for these organic-based PV 

modules range between £10.98/m2 and £103.56/m2.  Considering a 5% module 

efficiency, 98% module yield under STC, the module costs between £0.22/Wp and 

£2.11/Wp.  Translating this for a system with over 30 years module lifetime will result 

between 15.42p/kWh and 38.82p/kWh under 1000kWh/m2/yr average solar irradiance, 

with insignificant difference between the two types of technologies. 

Although this is a preliminary cost estimate for these emerging technologies, the 

potential of cost reduction for PV electricity from the current status was highlighted.  

The most significant factor in the cost estimates is mainly the substrate costs and 

process.  The lower end estimates consider flexible substrates and a faster process by a 

4.5 Conclusion 
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factor of 100 from glass modules.  So far, there was no full-scale industrial example, 

such as the roll-to roll process.  Hence, there is still need to understand this significant 

change in PV production that will eventually lead to competitive electricity prices with 

other energy sources. 

On the other hand, the LEC does not only depend on the manufacturing cost but also on 

module performance, location and BOS costs.  The module performance, efficiency and 

lifetime require improvement for competitive integration.  The BOS costs, which are 

likely to reach module costs, will also require to be minimised as much as possible.  

These factors are also important as not to lose the competitiveness with other mature PV 

technologies already in the market. 

Future potential developments on efficiency, lifetime and ultimately module cost have 

illustrated future possible trends.  The current historical learning curve is mainly based 

on a more mature PV technology that is mainly c-Si.  Though, this technology has been 

on the market for a number of years, a number of cost reduction factors still remain.  On 

the other hand, TF technologies are likely to reach higher levels of cost reduction than 

c-Si given production capacity expansion.  Hence one may anticipate steeper learning 

curves than the current one.  Besides, emerging PV technologies may lead to even 

higher learning pace.  The baseline of the learning curve for the emerging PV 

considered matches the historical one for the illustrated future anticipated learning rates.  

In order to achieve similar or steeper learning rates, bottlenecks in the production 

processes need to be properly addressed, to achieve the promising manufacturing cost 

reductions. 

Therefore, innovation both at the material and device level can help in addressing 

possible future materials concerns and cost reduction in delivering TF technologies.  

These PV developments may have a decisive role in defining future relative cost level 

and market penetration for the two groups of TF technologies, mature inorganic TF and 

emerging organic-based TF [59]. 



 



 

 

 

 

The environmental aspects of typical hybrid organic-based QD PV modules are 

explored.  In this chapter, LCA studies on PV energy generation are reviewed.  

The standardised Life Cycle Assessment (LCA) methodology is then introduced, 

and discussed LCA interpretation metrics used for sustainable evaluation.  The 

assumptions and boundaries are given followed by the results, comparison with 

other PV technologies.  Comparable criteria for sustainability of electricity-

generating systems namely net energy ratio (NER), energy pay-back time (EPB-T) 

and electricity carbon footprint (ECF) are found to be lower than mature PV 

technologies.  In addition, PV module lifetime and efficiency boundaries are 

found for the sustainability of emerging PV technologies. 

 

In support of sustainable source of energy, an overall evaluation of the product/system’s 

environmental impacts and benefits is required.  This environmental evaluation is 

assessed by the use of the well-known standardised LCA methodology.  Current 

commercially available PV technologies have undergone these environmental 

evaluations.  Most of the studies were performed from cradle to gate, investigating 

manufacture processes but excluding transportation.  However, the usage phase of the 

PV technology within a PV system was sometimes included because environmental 

burdens during production are compensated during the utilisation phase, due to low 

environmental impacts of renewable electricity generation.  However, the end-of-life 

management is usually neglected in preliminary studies as it normally results in 

negligible environmental burdens.  Wambach et al. [115] indicate a reduction of the 

energy pay-back time (EPB-T) by half when using recyclable material for wafer-based 

5  

Life Cycle Assessment for Hybrid 

Organic-Based PV Module 

5.1 Overview of PV LCA studies
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PV modules.  Comparison between PV studies is difficult since investigations employ 

different methods, use various data sources, replace unknown data with similar ones and 

take into account different levels of irradiation, operational periods and other 

assumptions for future technology enhancement. 

Table 5.1 summarises the results of the most cited PV LCA studies since 1976 [32, 63, 

64, 102, 115-138].  Substantial silicon wafer-based (c-Si) PV LCA studies were 

presented in the scientific literature.  In part, LCA studies were also approached on thin 

film (TF) PV technologies.  Recent studies have also reported LCA studies on the  

 

 

Table 5.1: Summary of PV LCA studies as published. 

Author REF Year E-PBT GHG LCEin*

PR L BOS η years gCO2 /kWh MJ/m2

Hunt [116] 1976 Si 12.00

mc-Si 12.0 2.10

a-Si 6.0 1.20

Hyne et al. [118] 1994 CIS 15 20-10 10-4

Phylipsen et al. [119] 1995 mc-Si 30-15 18-13 3.8-0.5 167-9.8

mc-Si 16-10 2.3-0.3

a-Si+ 14-6 2.7-0.4

CdTe 0.9-0.2

CIS 1.5-0.4

Keoleian et al. [121] 1997 a-Si 10 5.0 7.4 1359

Kato et al. [122] 1997 c-Si 0.81 20 15.5-4 91-21

mc-Si 14.0 189

sc-Si 16.5 114

sc-Si 12.2 11.8-3.3 83-25 15524-4159

mc-Si 11.6 2.4-1.5 20-13 3534-2267

a-Si 8.0 2.1-1.1 17-9 1643-1178

Frankl et al. [125] 1998 sc-Si 0.85 25 11.2 9.00 200

mc-Si 13.0 3.0-4.0 60 4200

a-Si 7.0 2.5-4.0 50 1190

Greijer et al. [127] 2001 DSSC 20 12-7 47-19

Kato et al. [128] 2001 CdS/CdTe 13-11 1.7-1.1 14-8.9 1802-1272

sc-Si 11.9 4.10 6829

CIS 8.9 2.20 2823

[123]

[124]

[126]

[129]

30

30

0.75

0.80

2000Alsema et al.

Palz et al.

2001Knapp et al.

0.651991[117]

PV 
Technology

Assumptions

1996 0.85-
0.75Alsema [120]

0.81Kato et al. 1998

30-15

18-10

Dones et al.

20

301998
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Table 5.1: Summary of PV LCA studies with LCIA results as published (continue) 

Author REF Year E-PBT GHG LCEin*

PR L BOS η years gCO2 /kWh MJ/m2

InGaP/mc-Si 25.0 5.30 13000

mc-Si 14.5 3.50 4928

InGaP 15.5 6.30 9612

Jungbluth et al. [131] 2005 c-Si 30 17-14 6.0-3.0

Peharz et al. [132] 2005 III-V (con.) 26.0 0.67

Wambach et al. [115] 2005 c-Si(recycled) 0.75 20 1.60

sc-Si 14.0 2.70 40 5240

mc-Si 13.2 2.20 35 3800

r-Si 11.5 1.70 30 2650

mc-Si 0.75 13.2 2.20 37

CdTe [EU] 0.75 8.0 1.00 21

CdTe [US] 0.80 9.0 1.10 25

Veltkamp et al. [63] 2006 DSSC 0.75 8.0 1.4-0.6 120-20 430

GaAs 21.2 5.00 6989

GaInP/GaAs 25.9 4.60 7772

mc-Si 13.5 4.20 3800

2007 a-Si 6.3 3.20 34.3 869

mc-Si 12.9 7.50 72.4 4444

CdTe 9.0 1.50 48 2031

CIS 11.0 2.80 95 3107

mc-Si 14.0 5.5-2.4 167-57 9720-3585

sc-Si 14.0 3.30 3449

mc-Si 13.2 2.90 2632

r-Si 12.0 2.70 2136

a-Si 6.5 3.00 1142

CdTe 7.1 2.70 1031

CIS 10.7 2.80 1986

Roes et al. [32] 2009 OPV 0.75 25 5.0 1.3-0.2 805-120

Espinosa et al. [102] 2010 OPV 0.80 15 3-2 2.0-1.4 379

Garcia-Valverde [64] 2010 OPV-lab 0.80 15 5/10 4 / 2 2801

con. - concentrated

* LCEin is for module only (BOS not Included)

[136]
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emerging organic-based PV technologies namely dye-sensitised solar cells (DSSC) and 

organic-organic (OPV) technology.  Some of these studies have added inventory data to 

this field of emerging organic-based PV technology. 

So far, LCA studies on organic-based PV modules, especially hybrid organic-based QD 

PV, are limited because no industrial fabrication processes have lead to stable, long 

lifetime solar cells.  This chapter is based on a preliminary LCA study developed by the 

author on PV systems using hybrid organic-based QD PV technology [4].  For the 

purpose of analysis, the chapter will further update this initial LCA study on the hybrid 

organic-based QD solar cell within a PV system.  Sustainability criteria results, 

including energy payback time (EPB-T), electricity carbon footprint (ECF) and net 

energy ratio (NER), are compared with previous LCA studies.  At the same time, initial 

characteristics such as minimum viable efficiency and lifetime for potential hybrid 

organic-based QD solar cell are suggested for a sustainable energy source within a PV 

system. 

 

The LCA was performed in accordance with EN ISO14040 and updates [139].  The 

LCA methodology is divided into 4 steps, as shown in Figure 5.1.  The LCA  

 

 

 
Figure 5.1: LCA framework within EN ISO 1404 

5.2 LCA methodology
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methodology offers an excellent foundation for conducting other analyses such as life 

cycle energy analysis (LCEA) and life cycle costing analysis (LCCA), where the results 

can be compared and integrated in the evaluation.  Please note that in the case of the 

previous chapter there may have been some inconsistency with assumptions and data of 

this chapter.  This is due to the time of studies and for easy comparability with previous 

studies in the literature. 

The software tool for LCA was the openLCA version 1 open source [140].  Two impact 

assessment methods were used to access the potential impacts of the environmental 

flows collected in the inventory stage. The equivalent Green House Gas (GHG) 

emissions are evaluated with IPCC 2007 data for a timeframe of 100 years, while the 

equivalent primary energy was calculated by the Cumulative Energy Demand (CED) 

LCIA method [141]. 

Important parameters for LCA interpretation of PV systems and other RE production 

technologies are the NER, the EPB-T and ECF, here referred to the sustainable metrics.  

Despite the PV technology, these three sustainable metrics are strongly affected by the 

model being used for irradiation level, orientation, energy for fabrication, system 

performance, lifetime and system design.  NER is suggested to be the metric of choice 

when comparing electricity generating systems.  The NER of a PV system is a function 

of its useful life, so this metric may assess the lifetime energy performance of an 

electricity generating system [121]. 

The system NER described by Pacca et al. [136] or the electricity production efficiency 

referred to by Keoleian and Lewis [121] compares the total life cycle energy inputs with 

outputs.  Hence the calculation is the life cycle energy output (LCEout) which is the 

energy produced from PV electricity generation, over its life cycle energy input (LCEin), 

which stipulate the RE obtained from each energy input source, most likely to be from 

non-RE sources, as described in (5.1): 

 

  out

in

LCENER
LCE

=  (5.1) 

 

The ECF is the calculation of the total emitted GHGs during a system’s life cycle 

divided by the electricity generated over the PV system lifetime as described in (5.2): 

  2
in

out

CO eqECF
LCE

−
=  (5.2) 
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The EPB-T, in (5.3), determines the amount of years needed so that the system 

compensates for the energy during production.  This sustainable metric does not 

distinguish the energy source, such as nuclear or fossil, or quality differences, that is 

electricity or heat use.  Jungbluth et al. describes EPB-T as the time until environmental 

impacts from the production of the plant are levelled out [142]. 

  inLCEEPB T
AEO

− =  (5.3) 

 

5.2.1 Goal and scope definition 

The assumptions within the utilisation phase influence the lifetime energy generation 

and thereby the sustainable matrices.  Krebs and Spanggaard define polymer solar cell 

lifetime as the time it takes for the efficiency to decay to half its initial value [14].  On 

the other hand, most commercially available PV technologies have an 80% power 

guarantee from the initial manufacturer efficiency after 25 years.  However, PV LCA 

studies have neglected efficiency degradation, and different lifetime periods were 

considered.  Therefore for easy comparability the initial analysis is based on 10% 

conversion efficiency without degradation, and 30 year lifetime assumptions as shown 

in Table 5.2.  Other conversion efficiencies and lifetimes are also discussed further in 

this paper. 

For the purpose of this study, a 1 cm2 glass substrate laboratory-scale was considered.  

The process is then scalable to a 1m2, size for a single module.  Parallel analyses of two 

types of hybrid organic-based QD solar cells, as described in section 2.6.2, were 

 

Table 5.2: Comparable assumed characteristics for solar cells [32, 63, 142] 

Efficiency (%) cm2/Wp Lifetime /years

Hybrid QD-based Solar Cells 10 100 30
OPV 5.0 200 25

DSSC 8.0 125 30

sc-Si 13.6 71 30
mc-Si 12.8 76 30
r-Si 11.7 83 30
a-Si 6.3 154 30

CdTe 8.7 141 30
CIS 10.4 93 30  
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performed.  The results were compared with other PV LCA studies with recent datasets 

from ecoinvent by Jungbluth [143] on wafer-based c-Si and mature inorganic TF 

technologies, considering the detailed inventory for BOS components for laminated 

BIPV system on a slated roof.  In addition, recent LCA studies on emerging organic-

based PV technologies were also compared and modelled [32, 63, 64, 102]. 

The amount of solar radiation absorbed by a PV system establishes the annual 

electricity output (AEO) as described in section 2.5 and defined in equation (2.1).  

Hence for the system utilisation phase the following assumptions are a common basis 

for comparability with other PV LCA studies: 

i. The average southern European yearly radiation at 1700 kWh/m2. 

ii. Performance ratio (PR) of 0.75 (25% system losses) which is due to PV system 

losses caused by the balance of system components (BOS) and other indirect 

losses.  Other PR in PV LCA studies ranged from 0.65 to 0.95. 

 

5.2.2 Inventory analysis 

The main input flows of the inventory shown in Table 5.3 were based and modelled on 

the available datasets from ecoinvent version 2.01 [143]. 

CdTe is the first PV technology to reach a cost below $1/Wp as illustrated in the 

previous chapter.  This was mainly due to the efficient throughput that First Solar has 

established within the fabrication of TF CdTe modules on glass substrate.  Hence 

considering glass substrate modules, the assembly of the solar cell module is based on 

TF CdTe vapour deposition fabrication processes of a laminate module in ecoinvent 

datasets [143].  This fabrication process energy, 58.12kWh/m2, is the highest boundary 

for emerging PV technologies.  It has already been demonstrated that roll-to-roll 

fabrication of OPV requires less fabrication process energy, about 7.48kWh [102].  Also 

the processing energy consumption for glass-to-glass DSSC was also considered at 

12kWh [63] instead of a range between 100kWh/m2 to 200kWh/m2 [127].  The energy 

mix considered is based on the European Union for co-ordination of transmission of 

electricity system.  This energy mix includes coal, gas, oil, nuclear, hydro, biomass and 

wind energy. 

Recent LCA studies on OPV have included new inventory data [32, 64].  These 

inventories were remodelled by ecoinvent datasets, and their equivalent primary energy 

results were found to be similar.  On the other hand, inventory data on nanoparticles 
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Table 5.3: Main input inventory flows for hybrid QD solar cells production 

Life Cycle Inventory data Blend Type Variant Type Units Comments

Electricity

Electricity,UCTE,grid 58.1200 58.1200 kWh/m2 Consumption

Materials

Glass Substrate

solar glass, low-iron 7000.0000 7000.0000 g/m2 x1 3mm glass

ITO on glass [88] 1.0000 1.0000 m2 ITO-fabrication

Interlayer (40nm)

PEDOT:PSS [88] 29.9700 - g/m2 40nm lab-production

ZnO Nanorods by VLS [109]

2000.0000 g/m2 ZnO powder

2000.0000 g/m2 carbon powder

7.4556 g/m2 for VLS chamber

0.1219 g/m2 for VLS chamber

Active Layer (200nm)

P3HT [88] 0.1875 0.0938 g/m2 lab-production

QD PbS [107] 0.9625 0.4813 g/m2 lab-production

Clorobenzene 156.2500 78.1250 g/m2 solvent

lithium flouride, at plant 0.0735 0.0735 g/m2 interlayer

aluminium primary at plant 0.1879 0.1879 g/m2 back electrode

Encapsulation

EVA copolymer, at plant 465.0000 465.0000 g/m2 EVA encapsulant

zinc oxide, at plant

carbon black, at plant

argon, liquid at plant

oxygen, liquid at plant

Interlayer (60nm & 46.4% active area)

Back Electrode (46.4% active area)

 
 

does not exist.  Hence, for QD, an inventory dataset was drawn up from a ‘greener’ lab-

production synthesis approach [144].  Meanwhile, ZnO nanorods growth was assumed 

part of the production process and only material data is included in the input flows.  The 

data and approach was extrapolated from an assumed vapour-liquid-solid (VLS) process 

for the growth of the nanostructures, due to its potential simplicity and efficiency for 

large scale manufacturing [145, 146].  All other module processes are assumed to be 

taken place in ambient conditions.  Some input flows are lab-based productions as there 

is still no commercial data available and hence do not include transportation. 
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Some PV LCA studies have omitted BOS.  Keoleian and Lewis argue that, if the scope 

of the analysis is to evaluate the total energy requirements for electricity generation and 

distribution, the product system would also include the additional necessary components 

to connect the PV module to the electricity grid and from the grid to a building’s 

distribution [121].  Emerging organic-based PV modules are likely to be manufactured 

for building integrated products.  Hence the BOS inventory may consist of frameless 

laminated modules.  Structure for BIPV module based system is included, since glass 

substrate is considered for this study.  The inventory of a typical BOS for a BIPV grid-

connected slanted rooftop installation using laminated modules, inventoried in detail in 

ecoinvent datasets by Jungbluth [138], is taken as the basis for BOS during comparison.  

However, one can keep in mind that BOS components for emerging building integrated 

PV (BIPV) may differ, most likely decrease in content, from other module based PV 

systems due to better integration aspect. 

End-of-life management and recycling alternatives were not included due to lack of data 

for similar solar cells.  However, such investigations may assume that glass and metals 

are recycled, offering reduction of mineral resources.  Inorganic substances may be 

disposed in landfills potentially offering energy recovery and the rest of polymers may 

be incinerated. 

 

5.2.2.1 Processing of PbS Nanoparticles 

PbS is a key direct band gap semiconductor material, having a small band gap (0.41 

eV), large Bohr radius, high dielectric constant and very high carrier mobility which fit 

well for optical and photonic devices.  These properties make optical response 

significantly better than GaAs and CdS nanoparticles [147-149].  MEG, as introduced in 

section 1.2.2, is exhibited by PbS nanoparticles, where the impact of a single photon 

generates two or more excitons [150, 151]. 

Several PbS nanoparticles synthesis were reported [152-155].  The lab-production 

synthesis of PbS nanoparticles in olive oil, illustrated in Figure 5.2 and inventoried in 

Table 5.4, was taken as the process for producing 0.882g in a dry state PbS QDs.  Olive 

oil is used as a capping agent and solvent which do away with air-sensitive, toxic and 

expensive chemicals.  This method also reports low temperature synthesis, at 60oC, for 

PbS nanoparticles [144]. 

PbO was dissolved in olive oil, octadecene and oleic acid to make lead oleate at 150oC 

under vacuum for two hours.  Then temperature was brought down to 60oC for reaction.  
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TMS solution was prepared in octadecne and olive oil without using heat at room 

temperature.  Nitrogen gas was used to provide inert reaction conditions for TMS 

solution.  The reaction process involved TMS injection into Pb-oleate at 60oC.  The 

growth time may only take around 10-180 seconds.  Purification of nanoparticles was 

carried out by dissolving the reaction in toluene and acetone before putting the solution 

into a centrifuge machine for 2 to 10 minutes, but for smaller nanoparticles such as QDs 

an hour may be required.  The latter is repeated for 2 or 3 times but does not require any 

heating process [144]. 

LCI of Olive Oil production was documented in Cyprus [156].  This was remodelled 

with ecoinvent database only.  The LCIA results were found similar at 3.6kgCO2-eq per 

litre of olive oil, using openLCA and ecoinvent database for Intergovernmental Panel on 

Climate Change(IPCC) at 100 Global Warming Potential (GWP).  Meanwhile, lead 

oxide LCI was taken from best available manufacturing technique documented [157]. 

 

 

 

 
Figure 5.2: PbS QD processing route in olive oil 
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Table 5.4: LCI for producing 0.882g in dry state of PbS QDs 

Life Cycle Inventory data Units Comments

lead oxide [120] 0.9000 g

olive oil [119] 14.5000 ml

fatty acid from vegetable oil, at plant 0.8950 g oleic acid

n-olefins, at plant 1.1835 g octadecene

sulfur, in ground 0.5640 g tetramethylsilane (TMS)

acetic anhydride, at plant 1.5600 g anhydrous acitone

toluene, liquid, at plant 13.0035 g

Lead Oleate Production 0.2800 kWh

TMS Solution Preperation 0.0075 kWh

Reaction Process 0.0040 kWh

Purification of Nanoparticles 0.1706 kWh  
 

5.2.3 Impact assessment 

Table 5.5 summarises the LCIA results and evaluations.  The calculated impact 

indicators for the analysed PV systems using hybrid organic-based QD solar cells are 

presented in Figure 5.3 along with comparable results from previous PV LCA studies.  

These are the updated results for typical hybrid organic-based QD solar cells, using 

recent datasets and other available datasets.  Therefore, the results may be subject to 

change in the future as technology matures, and more datasets and scaled-up processes 

become available. 

 

5.2.4 Interpretation 

From the LCIA results and evaluations in Table 5.5 and Figure 5.3, a PV system with 

hybrid organic-based QD solar cells compare favourably with other PV technologies.  

The results can be taken as boundary for commercial production.  A real commercial 

production, not based on lab-production extrapolations, may significantly reduce the 

burden of process energy.  This process energy was the main contributor for non-RE 

sources in CED and GWP impacts.  Glass substrates can also be replaced with flexible 

ones.  This will further reduce the impact on energy and environment, while also 

contributing to a replace building material in case of BIPV.  Meanwhile, the BOS 

components contribute nearly to half the energy required of a PV system using hybrid 

organic-based QD PV modules.  Again, the impact associated with BOS can be reduced 

significantly by using BIPV systems.  In addition, the laboratory scale sub-processes 
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tend to be less efficient than commercial processes, even though, the already very small 

amounts of chemical compounds required contribute to low environmental impacts. 

Despite a number of alternatives discussed above to further reduce the energy and 

environment impacts, hybrid organic-based QD solar cells are a sustainable alternative 

for electricity generation within the PV technology arena.  Assuming a 10% module 

efficiency and 30 year lifetime these PV cells may have the potential to generate at least 

20 times the amount of energy received during their production.  These assumptions are 

plausible in the long-term.  However, in the short and medium term, the main 

uncertainties are the electrical energy used in the solar cell production process as well as 

the lifetime and performance of future PV systems using organic-based PV 

technologies.  Hence further detailed LCA studies extrapolated to commercial scale 

production of a commercial available module are required, to minimise uncertainties. 

 

Table 5.5: LCA results for the studied hybrid organic-based QD solar cells. 

Blend Type Variant Type Units

H 1700 1700 kWh/m2

PR 0.75 0.75

η 10 10 %

L 30 30 years

AEO#

A
ss

um
pt

io
ns

C
al

cu
la

tio
ns127.50 127.50 kWh/m2

AEO#

C
al

cu
la

tio
ns

1517.25 1517.25 MJ-eq/m2

3825.00 3825.00 kWh/m2

45517.50 45517.50 MJ-eq/m2
LCEout

#

AEO#

C
al

cu
la

tio
ns

Im
pa

ct
s

CED+ for PV module 1030.01 1296.00 MJ-eq/m2

CED+ for BOS 820.00 817.34 MJ-eq/m2

Im
pa

ct
s

GWP for PV module 52.80 62.80 kg CO2-eq/m2

Im
pa

ct
s

GWP for BOS 54.87 54.87 kg CO2-eq/m2

NER 24.60 21.54

ECF 28.15 30.76 g CO2-eq/m2

EPB-T 1.22 1.39 years
# The efficiency electricity supply is assumed 11.9MJ-eq/kWhel
* Non-renewable energy sources

Ev
al

ua
tio

n
Im

pa
ct

s
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*a-Si on flexible substrate not glass

sc-Si, mc-Si, r-Si, a-Si, CdTe(mix) & CIS are datasets from ecoinvent v2.2 

BOS was based on ecoinvent v2.2 for 3kWp slanted roof BIPV laminated modules. 

Figure 5.3: Comparable LCIA results and evaluations 
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Emerging organic-based PV technologies are likely to bring short lifetimes and low 

efficiencies at the initial stage of commercialisation, nevertheless, low cost PV modules.  

Sensitivity analysis was performed to assess the impact of variations in module 

efficiency and lifetime on the NER and ECF metrics.  Figure 5.4 and Figure 5.5 show 

the sensitivity analyses in contour plots for NER and ECF metrics respectively.  The 

dark blue shaded area shows NER values less than one.  Similarly, the thresholds for 

efficiency and lifetime with respect to 50 CO2-eq/kWh are indicated with dark red 

shaded area. 

NER value greater than one signifies a sustainable product, which has potential to 

generate more RE during its lifetime than the energy required in producing the product.  

The results show that PV modules require high efficiency levels for short lifetimes to 

become sustainable. 
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Figure 5.4: Sensitivity contours for NER evaluations 
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Figure 5.5: Sensitivity contours for ECF evaluations 

 

5.3 Boundaries for sustainability 



Conclusion  121 
   

This chapter updated the preliminary laboratory-based LCA, on future potentially low 

cost PV systems using emerging hybrid organic-based hybrid PV modules.  Initial 

commercialisation of these PV modules is likely to come at the expense of efficiency 

and durability.  Comparable sustainability metrics were calculated, and boundaries for 

efficiency and lifetime related to environmental issues are estimated and suggested.  On 

the basis, of the data presented in this chapter, which is consistent with previous 

organic-based PV LCA studies [32, 64], it is shown that future potentially low-cost PV 

systems using hybrid organic-based QD PV modules is favourable. 

The LCIA and evaluation metrics are significantly less than that of c-Si technologies.  

On the other hand, the LCIA and evaluation metrics for mature inorganic TF 

technologies are more competitive.  However, preliminary indications show that a 

compromise between module lifetime and efficiency is required, for the PV system 

using hybrid organic-based QD solar cells, to be sustainable.  LCA studies are important 

for potential low-cost PV systems, such as hybrid organic-based QD PV modules, to 

penetrate the PV market as another sustainable electricity technology.  The focus of this 

chapter has been on environmental boundaries of PV systems using hybrid organic-

based QD PV modules for a sustainable source of energy.  However further 

improvements in data quality on mass production are needed for emerging organic-

based PV technologies. 

5.4 Conclusion 



 



 

 

 

 

This chapter sets the two system configurations namely with and without energy 

storage, and their mathematical models to formulate the mixed integer program 

(MIP).  The general scenario is a PV system optimisation problem within a 

domestic environment which is investigated under no financial support schemes.  

Two case studies, with fixed and dynamic electricity tariffs, are presented to 

provide optimal characteristics of a PV module on a system level analysis 

followed by a discussion on PV module lifetime with respect to BOM costs and a 

sensitivity analysis of system parameters.  Finally, the optimal sizing of PV system 

using emerging PV technologies is also investigated based on the technology and 

price development trends discussed in Chapter 4. 

 

Understanding the way PV systems integrate into the domestic household scenario is 

important, as emerging PV technology may lead to low-cost PV systems.  Hence, in this 

chapter, the objective of optimising the domestic household energy value, without PV 

incentive schemes, has two separate aims: 

i. to determine the suggested optimal efficiency of the PV module within a given 

available area, or  

ii. to determine the optimal system sizing. 

The problem may be considered as discrete optimisation, consisting of integer 

programming together with combinatorial optimization, due to the system 

configuration.  Therefore in achieving these aims, the most feasible operation for a 

domestic household is established by a Mixed Integer Program (MIP). 

 

6  

PV System Optimisation Within a 

Domestic Environment 

6.1 Introduction 
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As PV system costs decline to parity with fossil fuel generated electricity, grid parity, 

the solar market will see tremendous growth.  In this financial situation, ‘green 

washing’ investments through subsidies are no longer required and only the most 

economic feasible projects will progress.  While most studies focuses on PV project as 

investment opportunities through favourable conditions such as feed-in tariffs (FITs) 

and subsidised investment, it is timely to study the optimal PV integration within a 

domestic environment once subsidies run out. 

Previous studies on sizing a grid-connected PV system optimise the PV/inverter ratio to 

increase system efficiency and reduce energy losses [158], profitability and amortisation 

of system [159] while, on the other hand, pre-defined systems were evaluated with 

respect to some parameters variation [160].  In fact, studies based on simulations have 

evaluated PV system performance.  Some performance evaluation studies have been 

carried out on grid-connected PV systems [161-165].  Then again a number of studies 

have optimised the integration of PV systems in rural, stand alone hybrid systems [166-

169]. 

The optimal PV module integration has not yet been considered in sizing problem for 

the most feasible PV module efficiency and price.  The use of emerging PV 

technologies within the domestic environment requires further investigation on the PV 

modules frequent replacement.  The main objective is to maximise the economic benefit 

of the system by maximising the Net Present Value (NPV) or minimising the 

Annualised Life Cycle Cost (ALCC).  Within a domestic environment, the system 

includes local load, PV and energy storage, if the latter is available.  Once developed, 

this framework will provide a tool for optimal PV module integration characteristics at a 

specific PV LEC, as well as PV system sizing and economic viability under different 

scenarios. 

 

The two system configurations are shown in Figure 6.1, namely (a) without energy 

storage and (b) with energy storage.  The configuration components are all assumed on 

system level.  The PV system is connected to the grid within the domestic environment 

consisting of the typical components such as inverters, power control units and PV 

modules.  The load is the respective local load of the household itself.  The increasing  

 

6.2 Overview of grid-connected PV system optimisation 

6.3 The system configuration
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 (a) (b) 

Figure 6.1: Configuration of domestic PV micro-generator system 

 

use of PV systems may require amalgamation of demand response, grid energy storage, 

and spot pricing.  Intermittent energy sources, such as PV, are limited to at most 20 to 

30% of the electricity generated for the grid without such instruments [111].  Hence 

systems with energy storage may be a future configuration.  The energy storage is 

considered an electrochemical secondary battery. 

The Electrical Interface is the decision making component that decides whether to 

import or export energy, or even charge or discharge energy storage.  Hence the local 

load is firstly satisfied by a PV system that generates electricity from solar irradiance.  

Any excess of the energy generated is either stored or exported to the grid while, on the 

other hand, any energy deficit from the PV system or storage is imported from the grid. 

Hence due to the system configuration, the problem may be considered as discrete 

optimisation that consists of integer programming together with combinatorial 

optimisation.  The most feasible operation for a domestic household is established by a 

MIP which optimises the time-series model. 

The MIP was implemented using Fico-Xpress optimisation suite.  The time-series data 

inputs and outputs are hourly based.  Therefore, the energy flows are calculated in kWh.
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This section describes the mathematical formulation, objective functions and constraints 

for the calculation in the MIP formulation.  The MIP algorithm is expressed in standard 

form as in (6.1): 

  

minimise:  ( )

subject to: 

with:  are the variables (continuous, binary or integer)
,  are matrixes
, ,  are vectors

⎫
⎪< ⎪
⎪⋅ =
⎪≤ ≤ ⎬
⎪
⎪
⎪
⎪
⎭

eq eq

eq

eq

f x
Ax b

A x b
lb x ub

x
A A
f b b

 (6.1) 

where A, b, Aeq, beq are the inequality and equality equation constraints of x, and f is the 

vector of the objective function.  The unknown variables in vector x are limited by 

lower (lb) and upper (ub) bounds, and comprise of: 

- the design independent variables: the PV module efficiency ( PVη ) or the PV 

module area (A), capacity of energy storage, ( max
SOCS ) and the grid connection 

rating ( max
gridE ). 

- hourly operation dependent variables: the energy fed into the energy storage 

facility ( in
SE ), the energy consumed from the energy storage facility ( out

SE ), the 

grid imported energy (Ein) and the grid exported energy (Eout); and 

- decision binary variables: the hourly in
Sλ  and out

Sλ  define charging and 

discharge state for energy storage while the hourly I
eλ  and E

eλ  distinguish the 

import and export mode with the grid. 

 

6.4.1 Objective function 

The main objective of PV integration into a domestic environment described in this 

section is to maximise the value of the complete system.  Similar to other studies, the 

NPV is used for sizing problem, whereas the ALCC is used, for PV integration, to 

determine PV module efficiencies and costs at a certain PV LEC.  These two methods 

are described separately in this section.  Both methods value the system as a net 

economic benefit. 

 

6.4 Problem formulation 
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6.4.1.1 Analysis based on the Net Present Value 

The NPV is the sum of discounted single and annual cash flows over the system lifetime 

less the initial capital investment cost.  As described in section 3.2, NPV is the present 

worth of the system.  A positive value indicates that the accumulated benefits will 

exceed costs over the system’s economic life.  A high NPV indicates a good economic 

financial benefit. 

This method is very useful to evaluate project viability through profitability and hence 

compare different project scenarios.  Using this method, the objective of the problem is 

to maximise the system NPV over the PV system lifetime.  The yearly cash flow (CF) is 

discounted to the initial year, and the initial investment is subtracted as shown in (6.2): 

  
( )1 0

1

maximise: 
1

T
yNPV

y
y

CF
Z I

r=

= − +
+

∑  (6.2) 

where: y is the cash flow year , d is the annual discount rate, I0 is the initial investment 

in (6.3): 

  max
0 0BOM BOS S

y y SOCI C A C A C S y= ⋅ + ⋅ + ⋅ =  (6.3) 

where y = 0 (Year is 0) is the base date. 

CF is the cash flow calculated on the yearly total benefit ( tot
yB ) less the yearly total costs 

( tot
yC ).  For simplification, the operation and maintenance costs are neglected, since 

most domestic grid-connected PV systems have no moving parts, and current PV 

systems show that little maintenance is needed.  However, it may be suggested that due 

to regular replacement in the case of emerging PV technologies, maintenance cost 

margin can be taken as part of the BOM replacement investment cost.  Hence a small 

margin in the suggested BOM cost for emerging PV modules may be left for any system 

upgrades and maintenance required. 

The CF in (6.4) considers the grid energy transfer of buy and sell, the replacement of 

equipment and the grid connection rating. 
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where: 

N is the number of replacements of PV module 

αE = 1 if energy flows correspond to the system in j, otherwise αE = 0 

αPV = 1 if PV modules require replacement that corresponds with the system 

in j, otherwise αPV = 0 

αS = 1 if Storage System requires replacement that corresponds with the 

system in j, otherwise αS= 0, and 

 1

( 1) ( )
( 1)

N
adj PV
PV

j

C NC L L j
L N =

⎛ ⎞+
= × −⎜ ⎟+ ⎝ ⎠

∑  and ( )( ) ( )adj S
S

CC j T L j
T

= × −  

where: 

( , )r
PV y jα =1, at y=T, j=N+1, and 

( , )r
S y jα =1, when αS = 1 and y=T, j=N+1 except at y=0. 

The first term for the total revenue stands for savings in energy consumption from the 

grid.  The second term corresponds to the revenues from grid energy exports.  Finally, 

the third term is the benefit / loss for the fixed grid connection cost.  The last term 

simulates the FITs scheme revenue, if available. 

Since maintenance and operation costs are neglected, the terms for total costs are the 

cost increase in investment due to equipment replacements, PV modules and energy 

storage respectively.  BOS costs are set to be fixed throughout the whole system 

lifetime.  The cost adjustment for unutilised equipment before end-of-life is deducted, 

considering no salvage value after useful lifetime. 
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The NPV is a useful method to indicate the time investment is profitable and also the 

level of profitability.  However, this system NPV cannot explicitly show the PV LEC to 

integrate in a competitive market.  Therefore, ALCC is analysed in the next section. 

 

6.4.1.2 Analysis based on the Annualised Life Cycle Cost 

In order to maximise the benefit of the system, the Annualised Life Cycle Cost (ALCC) 

needs to be minimised.  For ‘pure’ PV cost integration evaluation, no support schemes 

are considered.  The cost is the sum of the annualised investment cost (CI) and yearly 

operational costs (Co) which the latter includes the levelised electricity cost for the PV 

system as in (6.5) and  

 1minimise: = +YC
I OZ C C  (6.5) 

where annualised investment cost for energy storage is given in (6.6): 
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and similarly Co is given in (6.7) 
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The benefit term (B) is the revenue from exports.  The FIT term is not included as it is 

not required for this analysis as stated earlier.  Meanwhile, the first two terms of the cost 

equation (C) correspond to grid running costs: fixed cost for grid connection and 

variable costs for energy imported.  The grid cost / benefit is interchanged from the 

ALCC to the NPV as cost and benefit respectively.  At the end, results from these two 

analyses can verify the working model on same assumptions.  On the other hand, the 

last term is the cost of PV system based on the LEC. 

 

6.4.2 Models’ details and constraints 

6.4.2.1 PV system model 

The PV energy production is calculated on a system level.  As in section 2.5, the electric 

power generated by the PV system is related with solar radiation.  Using solar irradiance 

received each hour on every square meter of the PV array surface, H; the PV array 
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efficiency, ηPV; the efficiency degradation limit, δPV; the total PV surface area, A; and 

system performance, PR; the total electric energy generated by the PV system EPV is 

obtained from (6.8): 

 

  ( )(1 )
2( ) ( ) 1 PV

PV PVE t H t A PRδη −= × × − × ×  (6.8) 

where t is the hourly time sample. 

 

6.4.2.2 Energy storage facility model 

PV systems with energy storage facilities have always been a question of cost versus 

supply reliability.  Energy storage in future PV systems may not only be required to 

even out irregularities in the electricity production and load demand but, in addition, 

storage facilities may provide the option of using the energy when it is the most cost 

effective such as in spot pricing, or smart grids interface.  On top, energy storage may 

reduce the power rating of the electrical interface from DC to AC, hence its cost.  

However, additional energy storage investment may increase the complexity and overall 

cost of the system.  Today, battery technologies commonly used in PV systems are lead-

acid and nickel cadmium.  These technologies are still at the very high end price, around 

$1 per kWh of energy storage, to become attractive to PV grid-connected systems.  To 

simplify the calculations, these extra cost/saving efforts are not considered in the 

analysis and similar system costs are considered as those without energy storage 

facilities.  Despite current energy storage technology costs are significantly high, some 

investigated scenarios may postulate the importance of small energy storage 

requirements. 

An energy storage technology facility has efficiency in relation to the energy stored and 

energy re-delivered.  The assumption of 90% efficiency in energy stored or delivered is 

taken with a total overall efficiency for energy storage of 81%.  The model also assumes 

that the depth of discharge is not more than 20% of the maximum energy storage.  

Electrochemical secondary storage battery dissipation losses are negligible, around 3% 

per month.  Lead Antimony batteries have a higher self discharge rate of 2% to 10% per 

week compared with the 1% to 5% per month for Lead Calcium batteries.  A 1% per 

month self discharge (99.9986% for every hour) is considered.  This is a decision factor 

for energy storage.  The rate of energy discharged or charged per hour is also restricted 

to 50% of the maximum energy storage. 
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Therefore, the relationship between the energy storage level SSOC, the electrical energy 

charge ES
in and the electrical energy discharge ES

out is expressed in (6.9).  The charging 

and discharging choices and efficiencies are later resolved in the energy flow 

management in the next section 6.4.2.3. 
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where the energy flows E and max
SOCS  are determined corresponding to the system design 

at each replacement stage. 

 

6.4.2.3 The energy flow management 

The energy generated by the PV system may be greater, smaller or equal to the energy 

required by the load.  The excess energy from PV was either exported to the grid or 

stored for a later beneficial use, if energy storage facilities are available within the 

system.  The optimal energy balance has to be achieved for every hourly time sample.  

Therefore, the electrical interface in Figure 6.1 is modelled on the energy balance, 

described in (6.10). 
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where in
Sη  and out

Sη  are the efficiencies (90%) when charging and discharging 

respectively and energy flows E and EPV are determined corresponding to the system 

design at each replacement stage. 
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The combinatorial electrical interface model consists of two decisions: first decision is 

defined by ( )I
e tλ  and ( )E

e tλ  as energy deficit from PV system or storage, or excess 

energy respectively.  The other second decision is defined by ( )in
S tλ  and ( )out

S tλ  as 

charging or discharging to / from energy storage.  Since both decisions have two 

processes independently and cannot be carried out simultaneously, the optimal 

procedure for assessing energy flow operation was defined using the λ-form separable 

programming [170], as defined in detail in (6.10) with respect to the energy balance.  

This λ is a real valued decision variable that forms a Special Ordered Set (SOS) first 

introduced by Beale et al [171, 172].  The stipulation of SOS1 is that at most one 

variable λ can be non-zero at an integer feasible solution. 

 

6.4.2.4 Electricity grid model 

As the system is a grid-connected system, the grid energy transfer is limited to the grid 

connection rating max
gridE  as in (6.11).  In the previous section, the selectivity between 

import and export was explained.  The exports are only the surplus from the PV 

generation. 
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6.4.2.5 PV contribution evaluation 

The PV performance can be defined by the term Solar Fraction (SF), the fraction of load 

met directly by a PV system, given in (6.12): 

 

  
8760

1

( )1
( )

in
PV

t LOAD

E tSF
E t=

= − ∑  (6.12) 

where 
8760

( )
( )

1

in
LOAD

E t
E t

t =
∑  is also known as the ‘loss of load probability’, ‘deficit of energy’ 

or ‘loss of power probability’.  The SF is also known as ‘autonomy’ or ‘load coverage 

rate’.  These terms are usually used for stand-alone systems.  However, such term also 

quantifies the reliability in grid-connected PV systems in respect to a thorough techno-

economic analysis.  A negative factor implies imported energy is stored for later use, 
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while a positive factor implies the fraction that the system contributes directly to the 

local load. 

 

Numerical studies were performed for the validity and effectiveness of the two objective 

functions evaluation presented in this chapter, and to evaluate the domestic environment 

that is willing to adopt a PV system.  For these studies, the problem is solved using 

Fico-Xpress solver interfaced with Matlab.  Firstly the ALLC for a pre-determined PV 

LEC is evaluated followed by the NPV evaluation of several scenarios. 

 

6.5.1 Input data 

The two time-series input data is solar radiation and load profile.  For the numerical 

studies, the yearly solar radiation assumed as a typical meteorological year was obtained 

from SoDa while the yearly load profile was taken from UK Energy Research Centre 

(UKERC). 

The HelioClim-3 is a database of solar radiation from minute to month of Europe and 

Africa.  The database HelioClim-3 irradiance values are calculated from the Meteosat 

satellites images.  The data taken in this case is the available 2005 sample data.  The 

data is based on flat surfaces.  Data for south faced tilts and south faced facades were 

adjusted accordingly, refer to Appendix A.  For easy comparability in the numerical 

studies, the calculated Manchester irradiance at optimal tilt angle is considered. 

There is a lack of monitoring data for domestic energy consumption.  Hence the yearly 

electrical energy demand data was based on the average data of the monitoring work for 

94 low-energy homes in Milton Keynes Energy Park between 1989 and 1991, in which 

their design corresponds with Government's Standard Assessment Procedure for Energy 

Rating of Dwellings (SAP) values, having 75 to 90 rating [173].  These load profiles 

were filtered, sorted and averaged in hourly time steps under four different categories 

described in APPENDIX A.  A typical total annual energy usage of a UK dwelling is 

around 15708.4 kWh-eq [174], while electricity annual average consumption is 

3,300kWh.  For easy comparability in the numerical studies, the load data for a four 

bedroom dwelling using electricity and gas energy sources is considered.  Only 

mitigation of the electricity energy sources is assessed throughout the numerical studies. 

 

6.5 Numerical studies
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6.5.2 Assumptions 

Table 6.1 lists the assumed parameters under one case study.  A 4 bedroom tarraced 

house is considered.  The PV area is tilted at the optimal south facing angle for latitude 

at Manchester, UK.  Fixed electricity tariff at 13.97p/kWh average UK 2009 domestic 

electricity cost for imports and 3p/kWh for export were considered.  In addition, the 

model was also modelled with dynamic tariffs from 2009 data, to show the impact of 

PV systems within an opened electricity market to private domestic users, refer to 

APPENDIX A for electricity tariffs. 

 

6.5.3 Results 

The optimisation results, for the ALLC as defined in (6.5), of the grid-connected PV 

system in this domestic environment include the PV module efficiency PVη  and the 

capacity of energy storage, max
SOCS  and the maximum grid connection max

gridE .  Meanwhile, 

the optimisation results, for the NPV as defined in (6.2), include the PV module area 

APV the capacity of energy storage, max
SOCS  and the maximum grid connection max

gridE . 

 

Table 6.1: Assumed parameters for PV systems optimisation studies 

Item Abbrev. Value Units

PV System Lifetime T 30 years

Performance Ratio PR 0.85

Available Area A PV 25 m2

PV Module Degradation  PV 50 %

Energy Storage System Storage Charge η S
in 90 %

Storage Discharge η S
out 90 %

Maximum Charging maxE S
in 0.5S soc

max kWh

Minimum Discharging maxE S
out 0.5S soc

max kWh

Minimum SOC S soc
min 0.2S soc

max kWh

Self-Discharge 1 %-month

Investment Costs C S 150 £/kWh

Lifetime L S 10 years

Financial Parameters Actual Discount Rate t n 7 %

Capital Unit Costs Balance of System C BOS 30 £/m2

Rates of Electrcity Imported Electricity  I 13.97 / Dynamic (2009) p/kWh

Exported Electrcity  E 3.00 / Dynamic (2009) p/kWh

PV Levelised Electrcity Cost  PV 10 / 4 p/kWh

Grid Connection Cost  grid 25 £/kW-year  
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6.5.3.1 Fixed tariff system 

Integrating a PV system at 10p/kWh under fixed tariffs, the cost objective for grid-

connected PV system with storage result is £581.73/year.  This saves only 19.8p/year 

when compared to a grid-connected PV system without storage and £22.55/year better 

off than without any system.  The optimal PV module efficiency, for this 25m2 PV 

system, is 4.12% with energy storage and 3.93% without energy storage.  Hence, the 

suggested BOM costs, with respect to a fixed lifetime of the PV modules throughout 30 

years system lifetime, are shown in Figure 6.2.  For systems with energy storage, equal 

increases in capital cost, every 10 years, are considered.  This suggests that low BOM 

costs, less than £10/m2, are required for optimal integration of PV modules at 10p/kWh.  

The results were confirmed with the NPV objective formulation which resulted in a 

NPV of £279.802 and £277.34 for systems with and without energy storage 

respectively. 

Figure 6.3 shows a sample day profile of the optimised energy flows.  Jointly with 

energy storage, PV generation and the local load consumption, the optimal energy flow 

management ensures the optimal operation for minimum costs.  Since PV energy and 

storage may be cheaper than grid imports, energy is stored during peak sun-hours for 

later  
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Systems with and without energy storage at 4.12% and 3.93% PV module efficiency respectively, at 

regular replacement periods / lifetime. 

Figure 6.2: Suggested BOM cost boundary under fixed tariff system 
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local load demand, and load is supplied by grid power if PV energy is not available.  

The excess PV energy can be stored and exported depending on the most economic 

state.  Therefore, in this way, the domestic household can save both from the grid 

connection cost, by flattening the household load profile, as well as the energy 

consumption costs.  In this case, the grid-connection rating is limited to 1.48kW from 

1.55kW with an optimal energy storage size of 0.15kWh.  On the other hand, the 

systems without energy storage may not necessary reduce the grid-connection rating, 

while it may increase it due to excessive exports.  In this case, grid-connection rating 

holds at 1.55kW. 

As shown in Figure 6.4, for a system with energy storage facilities 91% of the PV  
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Sample day profile (21st May) 

Figure 6.3: Day sample of optimised energy flows under fixed tariff system 



Numerical studies  137 
   

 
PV energy (left) and Load supply (right) 

Figure 6.4: Optimal energy share under fixed tariff system 

 

energy is consumed by the local load while 9% is excess exported energy to the grid.  

On the other hand, only 18% of the local load is supplied by the PV and Storage, and 

the remaining 82% is imported from the electricity grid.  For the grid connected system 

without energy storage, the difference is marginal, 90% of the PV energy is consumed 

by the local load while 83% is imported from the electricity grid.  Although storage may 

help reduce dependency on the grid by lower grid imports and exports, and increase the 

local energy sources contribution to the local load, energy storage investment costs 

requires a significant reduction for an increase in PV applications. 

 

6.5.3.2 Dynamic tariff system 

Integrating a PV system at 4p/kWh under dynamic tariffs, to participate in the electricity 

market, the objective for grid-connected PV system with and without storage result is 

£194.922/year costs.  This is £3.287/year better off than without any system.  The 

system does not suggest storage.  Only with low PV LEC, 80% less at 3.2p/kWh, 

storage makes a better contribution for the ALLC.  The optimal PV module efficiency 

for this 25m2 system is 10.94%, having an NPV value of £32.10. 
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The suggested BOM costs, with respect to a fixed lifetime of the PV modules 

throughout 30 years system lifetime, are shown in Figure 6.5 at PV LEC of 3.2p/kWh.  

For systems with energy storage, an equal increase in capital cost, every 10 years, is 

also considered.  This suggests that low BOM costs, less than £4/m2, are required for 

optimal integration of PV modules at 3.2p/kWh, to participate in the electricity market.  

The results were confirmed with the NPV objective formulation which resulted in a 

NPV of £248.31 and £248.266 for systems with and without energy storage 

respectively. 

Figure 6.6 shows a sample day profile of the optimised energy flows at an LEC PV 

integration of 3.2p/kWh, to participate in the electricity market.  In compliment with 

energy storage, PV generation and the local load consumption, the optimal energy flow 

management ensures the optimal operation for minimum costs.  Hence, when grid 

energy is cheap, energy might be stored for later use during peak-hours.  Therefore, the 

local load is supplied by grid power, if PV energy is not available.  The excess PV 

energy can be stored and exported depending on the most economic state.  Therefore, in 

this way, the domestic household can save both from the grid connection cost, by 

flattening the household load profile, as well as the energy consumption costs.   
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Systems with and without energy storage at 11.01% and 10.94% PV module efficiency respectively, at 

regular replacement periods / lifetime, participating in the electricity market 

Figure 6.5: Suggested BOM cost boundary under dynamic tariff system 
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In this case, the grid-connection rating is limited to 1.50kW from 1.55kW with an 

optimal energy storage size of 0.28kWh. 

Participating in the electricity market increases the PV source importance as a micro-

generator to the grid exports, nearly 50% exported energy.  As shown in Figure 6.7, the 

difference in PV contribution is minimal, while the ratio of the supply source to load is 

the same.  The PV contribution to the load has increased from around 20% under fixed  
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Sample day profile (21st May) 

Figure 6.6: Day sample of optimised energy flows, under dynamic tariff system 
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PV energy (left) and Load supply (right) 

Figure 6.7: Optimal energy share, participating in the electricity market 

 

tariffs to around 30% under dynamic tariffs.  Similarly, though storage may help reduce 

dependency on the grid by lower grid imports and exports, and increase the local energy 

sources contribution to the local load, its price requires a significant reduction for an 

increase in PV applications such as these. 

 

6.5.4 Sensitivity analysis 

The sensitivity analysis was performed on the impact of the variation in the LEC for PV 

integration, energy storage cost, grid-connection cost and available area; taking as a 

baseline the assumptions in Table 6.1.  As shown in Figure 6.8, under fixed tariffs, the 

LEC of PV at which one opts for integration significantly affects the objective function. 

Meanwhile, the objective problem design variable, the PV module efficiency PVη , has 

an exponential relation with the Area and LEC of PV, and slightly with the storage cost.  

Meanwhile as expected the energy storage cost and grid-connection costs considerably 

affect the contrary of the design variables, that is the capacity of energy storage, max
SOCS  

and the maximum grid connection max
gridE  respectively.  As a result, the LEC of PV 
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significantly affects the solar contribution, represented by the SF, while there is an 

optimal maximum suggested BOM cost for a specific LEC of PV.  The latter also 

distinguish where a PV system with the assumed parameters is still viable, by 

suggesting positive BOM cost.  Meanwhile, the available area and storage costs also 

notably affect the suggested BOM cost. 

Similar conclusion can be drawn from sensitivity analysis under dynamic tariffs.  The 

baseline for Figure 6.9 is LEC for PV at 4p/kWh, in which case no storage facility is 

required. 

 

 

 
Figure 6.8: Optimal variables sensitivity analysis under fixed tariff system 

 

 



142 PV System Optimisation Within a Domestic Environment 
  

 
Figure 6.9: Optimal variables sensitivity analysis, under dynamic tariff system 

 

6.5.5 Results: optimising Net Present Value (NPV) 

The optimisation results for the NPV as described in (6.2) of the grid-connected PV 

system in this domestic environment include the PV module Area APV throughout the 

system lifetime; and the capacity of energy storage, max
SOCS  and the maximum grid 

connection max
gridE , for each module replacement. 

In the investigated cases, the investment cost is later increased due to replacement of PV 

modules.  The investment upgrade of energy storage or module replacements is 

indicated, most of the time, by downward or sideways jumps.  The breaking point 

(NPV=0) indicates the amortisation of investment, the point of profitability and the pay-

back period (PBT). 
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Figure 6.10 shows the discounted cash-flows, for the systems under investigation in 

previous analysis and the optimistic scenario described in section 4.4, with respect to 

lifetime, efficiency and price.  It can be seen that there is no big difference under the 

cases considered being with and without storage.  Both systems have a payback time of 

16 years under no support schemes.  On the other hand, if emerging PV technologies 

where to follow the optimistic path, described in section 4.4, the optimal system sizing 

result is 5.42m2 of PV active area without energy storage.  The payback time is 28 

years, which is still too high to consider as an investment considering the unclear state 

of these technologies.  Under other scenarios, reference and pessimistic trends, 

discussed in the same section, no other investment is considered profitable.  Meanwhile 

with dynamic tariffs, participating in the electricity market, the payback time is similar 

to fixed tariffs, if the PV system is integrated at 3.2p/kWh while 28 years payback time 

if integrated at a PV LEC of 4p/kWh. 

 

In the context of integration a PV system within a domestic environment there is an 

optimisation problem to achieve the optimal size or characteristics for the net benefit of 

the system configuration.  The main assumption is that PV support schemes are non- 
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Figure 6.10: Optimal discounted net cash flows for the investigated studies 

 

6.6 Conclusion 
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existing.  Hence all PV generation is consumed locally by the local load or exported to 

the grid.  The grid electricity is either charged or paid using fixed tariffs or market 

electricity prices.  The objective is to demonstrate the framework developed for optimal 

sizing and energy flow management within the domestic household environment, with 

investment upgrades during system lifetime. 

Therefore, the main purpose of this developed framework is: 

- To be economic beneficial with respect to energy sources, load profile and grid 

imports / exports.  This is performed by optimising the operation of the system 

and PV use to the local load. 

- To suggest the acceptable PV module characteristics: efficiency and price 

target, for a given lifetime, within a domestic environment, and 

- To provide a metric, based on NPV of the system, for the feasibility and 

viability to invest within different possible future scenarios. 

The focus of this chapter was to investigate the integration of PV systems under no 

support schemes at a system level analysis.  The framework is beneficial in determining 

system cost boundaries for PV technologies at grid parity integration.  A PV system 

requires a positive NPV, so the owner is better off investing than not investing.  On the 

other hand, incentives should be structures for a £0 NPV at the time systems are 

projected to be economically viable in that location without incentives.  This is further 

discussed in the next chapter. 

 

 



 

 

 

 

This chapter describes the proposed multi-objective (MO) approach as a basis of 

PV deployment support schemes.  The MIP developed in chapter 6 is used to 

investigate another conflicting objective with the economic objective on a micro-

level, which describes the end-user interests by minimising grid consumption, or 

macro-level, describes the public interests by minimising the carbon footprint.  

The application of three suggested MO methods is demonstrated on the two 

system configurations.  Hence, the chapter firstly reviews MO studies for PV 

systems, which show the gap in studies related to on-grid systems.  Then three 

suggested MO methods are explained, followed by the objectives definitions for 

the applied model.  The trade-off results of 16 scenarios are illustrated, and 

discussions on their compromise solution set are provided.  Finally, the chapter 

highlights the use of MO approach PV system integration framework that draws 

attention to the optimal and compromise characteristics of PV modules in a PV 

system and also the optimal and compromise sizing of a PV system. 

 

Global energy and environmental problems are at the top agenda for most countries.  

PV systems have the advantage of reducing fossil fuels consumption and mitigate Green 

House Gas (GHG) emissions.  Despite their current, expensive price, residential PV 

systems may be an attractive investment especially when a support scheme is in place, 

such as the ones reviewed in section 2.3.  In the near future, emerging PV technologies 

may also open to commercial markets for micro-generation.  However, these PV 

technologies may initially have limitations in efficiency and durability, making the 

penetration process into the micro-generation PV market unclear. 

7  

Multi-Objective Optimisation of a 

PV System 

7.1 Introduction 
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MO optimisation approach is used to satisfy two or more conflicting objectives.  The 

objective functions are discussed later in the next section.  This approach will lead to 

trade-offs between the objective functions, and a possible compromised solution is 

suggested. 

MO studies have been extensively performed on stand-alone hybrid PV systems [166, 

175], optimising the economic benefit (ALCC or NPV) and environmental benefit (CO2 

avoided).  Grid-connected PV systems studies are not significantly studied within a 

multi-objective approach.  Two studies, a deterministic and a probabilistic approach, 

considered the economic benefit (ALCC) [176, 177]. 

The optimal integration of PV systems at a LEC higher than grid-parity using MO 

approach, is a contribution by the author [178].  This is discussed in this chapter.  In 

addition, grid-connected PV systems considering the economic benefit (ALCC or NPV) 

and environmental impact / benefit have not been considered.  This approach provides 

further understanding for future PV support schemes especially related to the integration 

of emerging PV technologies for micro-generation. 

 

The field of MO optimisation defines the science of making decisions based on trade-

offs between conflicting objectives.  The general accepted solution of an MO problem is 

a Pareto Optimal solution.  A Pareto Optimal Solution is one for which any 

improvement in one objective worsens at least one of the other objectives [179-182].  

Normally non-Pareto efficient solutions are neglected while Pareto efficiency is an 

important criterion for economic evaluation and public policies.  There are several 

approaches to obtain such solutions.  This section describes the generic mathematical 

formulation of the three MO methods, based on two objectives (bi-objective cases) 

which belong to the so-called second class methods [183], namely: 

i. The Weighted Sum (WS) Method 

ii. The Compromise Programming (CP) Method 

iii. The Normalised Normal Constraint (NNC) Method 

The methods were chosen on the grounds of their easy application and verification of 

the Pareto solutions, to overcome the drawbacks of other methods, and for an insight to 

a comprised solution within the MO formulation. 

 

7.2 Overview of grid-connected PV systems MO approach

7.3 Multi-objective optimisation theory
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7.3.1 The Weighted Sum (WS) method 

This is the simplest way to formulate a MO function, by associating weights to the 

objective function and then, do a weighted sum of the objective functions.  Therefore, a 

new objective function is formed in (7.1): 

 

  
1 1 2 2

1 2

1 2

( ) ( ) ( )
subject to: 1

, 0

eqf x w f x w f x
w w

w w

= + ⎫
⎪+ = ⎬
⎪≥ ⎭

 (7.1) 

 

The thick line in Figure 7.1 illustrates the Pareto optimum solution for the objective 

functions, f1(x) and f2(x).  The optimum solution which, in this case, minimises varies 

along the thick line in the figure as the weight values of w1 and w2.  If the space of the 

objective function is a convex, changing the value of the weights approximates the 

trade-off surface.  The weights have the significance of importance of each objective 

function. 

 

7.3.2 The Compromise Programming (CP) method 

Based on the geometrical definition of best, close to ideal solution, this method is used 

to obtain a satisfactory compromise set.  This method has two weaknesses the extreme 

efficient points have already been established, and the best compromises could not be 

the interior points.  However, these weaknesses do not affect this developed model.  The 

extreme efficient points, determined from the WS method, give a convex pareto 

solution. 

 

 
Figure 7.1: Pareto optimal solution with WS method 
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Thus, for the L1 metric the best-compromise (closest to the ideal point) can be obtained 

by solving the following LP problem in (7.2): 
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 (7.2) 

where: 
*

zf  is the component of the ideal solution (Utopia point) and 

 *zf  is the component of the non-ideal solution 

 

For the L∞ metric, the maximum deviation (d) from among the individual deviation is 

minimised.  Hence this metric is obtained by solving the following LP problem as in 

(7.3) 
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The metrics L1 and L∞ are a subset of the efficient set, called the compromise set.  The 

next best-compromise set falls between these two metrics.  This CP method is called the 

displaced ideal.  The compromise set is reduced to a convenient size, suggesting a 

compromise solution.  The method of the displaced ideal repeats the two LP problems 

above iteratively, taking the new result as the ideal, until a satisfactory compromise set 

is found [184]. 

 

7.3.3 The Normalised Normal Constraint (NNC) method [183] 

The NNC method is a follow-up of the Normal Constraint method for generating a set 

of evenly spaced solutions on a Pareto frontier.  The method was used to verify the 

Pareto frontier results using the WS and CP method.  These methods do not generate 

even spread optimal solutions and the WS method may not generate all the available 

Pareto points. 
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The graphical representation of the method is shown in Figure 7.2.  Figure 7.2 (a) is the 

generic design space which is not normalised, similar to the result obtained by the WS 

method.  Figure 7.2 (b) illustrates the same design space but this time, normalised, with 

the ideal solution set at the origin (0, 0) and the extreme efficient points set at one unit 

away from the ideal solution.  A line is drawn between the two extreme efficient points, 

called the Utopia Line as indicated in Figure 7.2 (c).  The Utopia line is further divided 

into m1-1 segments, which will lead to m1 points.  Figure 7.2 (d) shows a normal line 

(Line NU) to the Utopia Line which reduces the feasible space.  Hence minimising 

2 ( )f x , the optimal point 21f f  results.  The solutions are generated by translating this 

Line NU to each space point on the Utopia Line, which are equally distributed. 

The graphical representation procedure in Figure 7.2 is given in seven step process that 

formulates this NNC method: 

Step 1: Anchor Points - Two anchor points are the two extreme efficient points of the 

pareto solution, which can be obtained by solving each objective separately.  Each 

anchor point contains the most ideal and the non-ideal solution (i.e. f1 is (f*1,f*
2) and f2 is 

(f*1,f*2).  The line joining these two anchor points is called the Utopia Line. 

Step 2: Normalisation of the Design Space – Normalisation is performed to avoid 

scaling deficiencies and hence the optimisation is performed on a normalised design 

space.  The normalisation of a variable is signified by a bar on top.  The Utopia point is 

the ideal solution is (f*1,f*
2).  The lengths l1 and l2, between the extreme points and the 

ideal solution, are calculated in (7.4): 
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Hence using the above lengths, the normalisation of the design space is given in (7.5): 
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Step 3: Utopia Line Vector - is the direction from f1 to f2 in (7.6): 

  2 1
1N f f= −  (7.6) 

 

Step 4: Normalised Increments – for a number of solutions (m1), the equal increments ξ1 

are computed in (7.7): 
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Figure 7.2: Graphical representation of the NNC method [183] 

 

  1
1

1
1m

ξ =
−

 (7.7) 

 

Step 5: Generating Utopia Line Points - generating a set of equally distributed points on 

the Utopia line as shown in Figure 7.2 (c) follows the mathematical formulation in (7.8) 
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where εkj is increased by ξ1, between 0 and 1, and j is a member of 1, 2, …m1. 
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Step 6: Pareto Points Generation – For each evenly distributed point (j) on the Utopia 

line an optimisation for f2(x), the optimisation problem is defined in (7.9): 
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Step 7: Pareto Design Metrics Values – The non-normalised design metrics can be 

obtained from an inverse mapping of (7.10): 

  * *
1 2 1 2 1 2 2 2( ) ( ) ( ) ( )f x f x f x l f f x l f⎡ ⎤= − −⎣ ⎦  (7.10) 

 

Some part of the Pareto frontier may not be captured by the WS or CP.  In WS, some 

points may be captured through iterative process by the appropriate scaling of the 

weights. 

 

The conflicting objectives of PV integration into a domestic environment described in 

this section are to maximise the value of the complete system while at the same time 

trying to maximise the contribution either to the local load (micro-level: customer 

perspective) or environmental benefits (macro-level: public perspective). 

 

7.4.1 Maximising the economic value of the complete system 

As described in sections 6.3.3.1 and 6.3.3.2, the net economic benefit for the customer 

(micro-level) is found either by maximising the NPV of the system, or minimising the 

ALCC.  The two methods for optimal sizing and optimal integration respectively are 

used in this chapter.  The objective functions have the general form as in equations 

(7.11) and (7.12) respectively: 
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7.4 The objective functions
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 where in (7.11), the NPV is maximised.  The first term is the initial investment, 

referring to BOS component costs, initial energy storage and PV modules, and the 

second term is all the discounted cash flows throughout the system lifetime, which 

includes an increase of investment due to replacements, benefits from not importing 

electricity and any revenue from selling electricity into the grid; and 

in (7.12), the ALLC is minimised.  The first term is the annualised costs for any energy 

storage including regular replacements every ten years, and the second term is the 

operational costs which include the LEC for PV system, which includes BOS and BOM 

costs, energy import costs and any revenue from exported energy to the grid. 

 

7.4.2 Maximise the contribution to the local load 

At the micro-level, customer perspective, the contribution to the local load is preferred 

to be maximised.  Therefore minimising the energy grid imports will lead to maximising 

the contribution of the PV micro-generator system in (7.13). 

  
8760
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Z E t

=
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where the energy flows Ein is imported energy from the grid, corresponding to the 

system design at each replacement stage. 

 

7.4.3 Maximising the environmental benefits 

On the macro-level scenario, renewable energy systems, such as PV systems, are 

welcome due to a sustainable energy source.  Hence these systems can mitigate GHG 

emissions, expressed in CO2-equivalent.  Similar to the economic objective above, the 

net environmental benefit is found by either maximising the CO2 benefit of the system, 

or minimising the annual CO2 emissions.  The two methods for optimal sizing and 

optimal integration respectively are used in this chapter.  The objective functions have 

the general form as in equations and  respectively: 

  2
2 2 2
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CO Benefit Component Initial Mitigated y

y
Z CO CO− − −

=

= − + ∑  (7.14) 

  2
2 2 2minimise: CO emitted LCIA OperationZ CO CO− = +  (7.15) 

where in (7.14), the CO2 benefit of the system is maximised.  The first term is the initial 

investment CO2-equivalent emissions for system components, such as BOS, energy 

storage and PV modules.  The second term is all the yearly CO2-equivalent net benefit 

throughout the system lifetime, which includes the increase in investment CO2-
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equivalent emissions due to investment replacements, the CO2-eq emissions mitigated 

from energy produced / saved (generated) and grid CO2-eq of the consumed energy. 

In (7.15), the annual CO2 emission is minimised: the first term is the annualised CO2 

equivalent for any energy storage, BOS components and PV modules including fixed 

regular replacements, and the second term is the operational CO2-eq emissions for 

energy consumed less energy produced / saved (generated). 

Note there are differing opinions on the appropriate value for the CO2 emission intensity 

of grid import and export electricity due to the grid inefficiencies.  The  SAP 2009 CO2 

conversion factors are taken during the case studies.  Hence the CO2-equivalent for 

consumed energy is 0.517 kg/kWh and the CO2-equivalent for energy mitigated either 

by grid exports or savings from the grid is 0.529 kg/kWh [185]. 

Similarly, depending on the model objective, the PV and energy storage CO2 in the 

objective can also be expressed in terms of the system’s CO2 impact factor as described 

in chapter 5, per unit such as m2, Wp or kWh.  The baselines for CO2-eq impact are 

30kg-eqCO2/m2 for BOM, 15kg-eqCO2/m2 for BOS and 60kg-eqCO2/kWh for energy 

storage.  The BOM and BOS CO2 impact are general assumed figures close to literature 

in chapter 5 while the CO2 impact for energy storage is that for a battery (0.06kg-CO2 

/Wh capacity) [186]. 

 

7.4.3.1 The abatement cost 

The abatement cost is the cost borne by a policy support scheme or individual for the 

elimination and/or decrease of an unwanted item that the society / individual has 

created.  There are two main concepts.  At the micro-level, the consumer would like to 

reduce the energy consumption from the grid.  On the other hand, at the macro level 

carbon-free domestic environment is supported.  If the NPV is positive, or ALCC are 

less than without PV system, then there is no abatement cost, as the system is already 

profitable.  However, if ALCC are higher than without PV system, that implies a 

negative NPV, the abatement cost is the negative NPV of the complete system divided 

by the electricity consumption or CO2 avoided.  Hence the abatement cost determines 

the amount of funding required to make an investment economically viable. 

 

The following scenarios in Table 7.1 and Table 7.2 are compared to analyse the 

influence of some assumptions taken, as well as future anticipated developments. 

7.5 Results 



154 Multi-Objective Optimisation of a PV System 
  

Table 7.1: Scenarios for integrating a PV system at a PV LEC 

1 10 Manchester (MAN) 4 Bed G & E Fixed

2 41.3 Manchester (MAN) 4 Bed G & E Fixed

3 41.3 Malta (MLT) 4 Bed G & E Fixed

4 41.3 Manchester (MAN) 2 Bed G & E Fixed

5 41.3 Manchester (MAN) 4 Bed G & E Fixed

6 41.3 Manchester (MAN) 4 Bed G & E Variable

7 4 Manchester (MAN) 4 Bed G & E Variable

8 41.3 Manchester (MAN) 4 Bed G & E Variable

Scenario PV LEC (p/kWh) Typical Radiation Typical 
Load

Grid 
TariffColour Energy 

Storage

 
 

Table 7.2: Scenarios for optimal sizing a PV system at a PV LEC 

1 Reference Manchester (MAN) 4 Bed G & E Fixed

2 Optimistic Manchester (MAN) 4 Bed G & E Fixed

3 Pessimistic Manchester (MAN) 4 Bed G & E Fixed

4 Fixed Replacement Manchester (MAN) 4 Bed G & E Fixed

5 Fixed Replacement Manchester (MAN) 4 Bed G & E Fixed

6 Fixed Replacement Manchester (MAN) 4 Bed G & E Variable

7 Fixed Replacement Manchester (MAN) 4 Bed G & E Variable

8 m-Si Module Manchester (MAN) 4 Bed G & E Fixed

ColourScenario Description Typical 
Load

Grid 
TariffTypical Radiation Energy 

Storage

 
Reference, Optimistic and Pessimistic scenarios were described in section 4.4 

Fixed Replacement refers to an emerging PV module (5% efficiency, 5 year lifetime and £50/m2 BOM costs at year 

zero). 

m-Si Module describes a mature PV module (17% efficiency, 30 year lifetime and £396/m2 BOM costs at year zero). 

 

7.5.1 Micro-level analysis – economic objective vs consumption 

The trade-off relationships, region of the non-inferior points, between the two 

conflicting objectives the economic objective (Z1
ALLC) and the energy consumed from 

grid (Z2
E), are shown in Figure 7.3 under various scenarios as in Table 7.1.  The ALLC 

is decreased as the PV contribution is lessened.  100% is the reference without PV 

system for a 4 Bed gas and electricity load profile category.  When having a higher LEC 

than grid, the trade-off shifts accordingly to the original electricity cost of household 

without PV system.  With energy storage, the trade-off extends to higher cost to  
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*100% is the baseline for a 4 Bed G & E without PV system under fixed electricity tariffs.  Plots are 

plotted with the NNC method.  Dotted points represent the WM results. 

Figure 7.3: Trade-off relationships between Z1
ALLC and the Z2

E 

 

mitigate the energy consumed from the grid.  The MO optimisation formulation 

considers any PV module efficiency between 0% and 30%, the latter is a likely 

reachable efficiency for commercial modules by mature PV technology or future 

emerging ones.  The formulation also assumes a threshold in energy storage of up to 

100kWh. 

Figure 7.4 (a) and (b) show the optimal values of efficiency (ηPV) and energy storage 

(SSOC
max - where available) and Grid Rating (Egrid

max) respectively, in relation to the 

weight, w, which measures the importance to the economic objective (ALCC). 
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* Significance of the economic benefit

(c) Calculated PV Contribution (d) Suggested BOM Costs
# 5 year lifetime

ηPV<=30%, Smax<=100kWh
(b) Suggested Grid Rating @ £25/kWh(a) PV Efficiency & Storage Capacity
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Figure 7.4: Optimal values of design variables for multi-objective Z1

ALLC vs Z2
E 

 

In Figure 7.4 (a), by setting w = 0.8 to 1.0, the optimal value of efficiency becomes zero 

in most cases except where the PV LEC is lower than the grid tariff.  On the other hand, 

ηPV increases as the importance to the economic objective is lessened.  For systems with 

energy storage, this increase is more abrupt to make the most out of the energy storage 

facilities.  The energy storage capacity is kept to the minimum until the economic 

objective is of no longer importance w = 0.0.  This increase in ηPV and SSOC
max is 

disadvantageous economically to the domestic user as this requires higher annual costs 

as shown in Figure 7.3. 

As shown in Figure 7.4 (b), at grid fixed rating cost at £25/kWh/yr, the optimal value 

for grid connection (Egrid
max) increases due to access PV energy production exported to 

the grid.  However, it is shown that systems with energy storage reduces the grid rating 

mid-range (w = 0.4 to 0.8). 
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Figure 7.4 (c) and (d) are derived calculations of PV contribution to the local load (fPV) 

and BOM costs (CBOM) for a 5 year lifetime module, in relation to the weight, w, which 

measures the importance to the economic objective (ALCC). 

As shown in Figure 7.4 (c), for PV LEC lower than grid, the PV contribution cost does 

not improve significantly, while, for systems with energy storage, the PV contribution 

to local load is much higher.  In Figure 7.4 (d), the BOM costs, which may include a 

margin for module replacement costs, was a wider range for systems with energy 

storage at w = 0.2 to 0.6 for a LEC at 41.3p/kWh.  If integrating PV system at a lower 

LEC than grid tariff, the suggested BOM cost, is lower than £100/m2. 

Table 7.3 summarises the compromise solution sets of the above analysis between the 

two conflicting objectives the economic objective (Z1
ALLC) and the energy consumed 

from grid (Z2
E).  The compromise solution sets’ optimal values for efficiency lie in 

between 5% to 19%.  These efficiencies can be found in commercial PV modules.  The 

Trade-Off cost of saving a kWh from energy imports is much higher for systems with 

LEC greater than grid tariff at 41.3p/kWh. 

The above analysis was based on the additional annual cost required by minimising 

1kWh from the electricity grid (trade-off).  In this part of the analysis, the domestic 

environment economic benefit / loss is expressed with NPV of the system.  Hence the 

trade-off relationships between the two conflicting objectives the economic objective 

(Z1
NPV) and the energy consumed from grid (Z2

E) are shown in Figure 7.5 under various 

scenarios in Table 7.2.  The NPV is increased as the PV contribution is lessened.  NPV 

greater than zero represents profitable investment.  Having a higher LEC than grid, 

investment is not profitable at any point and hence the trade-off begins from 0.  With 

energy storage, the trade-off extends to lower NPV to mitigate the energy consumed 

from the grid.  The MO optimisation formulation considers a maximum available area 

of 25m2, the latter is considered a typical household roof area.  Similarly, the 

formulation also assumes a threshold in energy storage of up to 100kWh. 

Figure 7.6 shows the optimal values of the PV module sizing (A), in relation to the 

weight, w, which measures the importance to the economic objective (NPV).  It is 

shown that, for emerging PV technologies, the increase in the area / sizing is more than 

for current PV technologies.  Fixed replacement emerging PV technology was assumed 

at 5 year lifetime, 5% efficiency and 50% degradation limit.  While, for m-Si module, a 

system lifetime, 17% module efficiency and 80% degradation limit were assumed. 

 



158 Multi-Objective Optimisation of a PV System 
  

Table 7.3: Summary of the compromise solution sets for the scenarios in Table 7.1 

CS metrics Obj1 (ALCC ) Obj2 (E I ) η PV f Smax Imax CBOM Trade-off at
£ kWh % kWh kWh £/m2 £/kWh

Scenario 1:
L 1 654.26 2857.24 12.51 0.29 1.80 30.93
L ∞ 654.17 2857.39 12.51 0.29 1.80 30.91

Scenario 2:
L 1 1152.50 2980.03 8.73 0.26 1.55 107.78
L ∞ 1129.84 2994.74 8.41 0.26 1.55 103.49

Scenario 3:
L 1 1312.92 2727.50 6.41 0.33 1.55 141.05
L ∞ 1250.53 2754.97 5.91 0.32 1.55 129.49

Scenario 4:
L 1 818.71 1682.24 7.06 0.28 1.02 85.26
L ∞ 807.69 1686.29 6.92 0.28 1.00 83.34

Scenario 5:
L 1 1939.21 1224.02 18.26 0.70 12.00 1.01 194.88
L ∞ 1965.79 1195.58 18.52 0.70 12.45 1.02 197.73

Scenario 6:
L 1 845.39 2978.93 8.76 0.26 1.55 89.21
L ∞ 783.66 3019.05 7.92 0.25 1.55 79.93

Scenario 7:
L 1 223.49 2755.91 18.36 0.32 2.76 14.06
L ∞ 223.69 2755.29 18.41 0.32 2.77 11.65

Scenario 8:
L 1 1792.70 1234.83 18.16 0.70 11.85 1.00 234.86
L ∞ 1803.70 1224.04 18.27 0.70 11.95 1.02 236.38

-0.29

-1.92

n/a

-0.91

n/a

n/a

-0.94

-0.62

-2.08

-3.57n/a

-3.89

n/a

n/a

 
 

Table 7.4 summarises the compromise solution sets of the above analysis between the 

two conflicting objectives the economic objective (Z1
NPV) and the energy consumed 

from grid (Z2
E).  The compromise solution sets’ optimal values for area lie in between 8 

to 25 m2, which is a typical available area in domestic household.  The abatement cost 

to mitigate energy from the grid is lower for emerging technologies than for mature 

technology at the compromise solution set. 
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Plots are plotted with the NNC method.  Dotted points represent the WM results. 

Figure 7.5: Trade-off relationships between Z1
NPV and Z2
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Figure 7.6: Optimal values of design variable - APV for multi-objective Z1

NPV vs Z2
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Table 7.4: Summary of the Compromise Solution Sets for the scenarios in Table 7.2 

CS metrics Obj1 (NPV ) Obj2 (E I ) A PV Abatement Cost Trade-off at
£ kWh m2 £/kWh £/kWh

Scenario 1:
L 1 -635.06 22173.80 11.54 0.30
L ∞ -643.64 22159.00 11.65 0.30

Scenario 2:
L 1 -155.15 21904.40 14.99 0.06
L ∞ -155.51 21903.60 15.00 0.07

Scenario 3:
L 1 -2041.06 22292.80 11.98 1.02
L ∞ -2036.73 22296.20 11.95 1.02

Scenario 4:
L 1 -1459.32 21299.60 12.84 0.49
L ∞ -1459.86 21298.70 12.85 0.49

Scenario 5:
L 1 -3447.23 18531.90 25.00 0.60
L ∞ -1504.43 21206.90 13.14 0.49

Scenario 6:
L 1 -2242.44 21080.90 13.93 0.70
L ∞ -4084.51 21609.40 11.39 1.52

Scenario 7:
L 1 -4594.33 18531.50 25.00 0.80
L ∞ -4084.51 18866.10 24.25 0.75

Scenario 8:
L 1 -1852.68 23308.90 8.74 1.88
L ∞ -1910.99 23299.30 8.93 1.92

-0.39

-0.50

-0.59

-1.28

-0.77 / -0.85

-0.73

-4.78

-8.78

 
 

 

7.5.2 Macro-level analysis – economic objective vs CO2-eq emission 

The micro-level analysis is repeated this time considering the CO2-eq Emission with the 

economic objective.  The trade-off relationships between the two conflicting objectives, 

the economic objective (Z1
ALLC) and the equivalent emitted / benefited CO2 from 

equipment installed, grid imports and grid exports (Z2
CO2-emitted), are shown in Figure 7.7 

under various scenarios as in Table 7.1.  The ALLC is decreased almost linearly as the  
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*100% is the baseline for a 4 Bed G & E without PV system under fixed electricity tariffs.  Plots are 

plotted with the NNC method.  Dotted points represent the WM results. 

Figure 7.7: Trade-off relationships scenarios between Z1
ALLC and Z2

CO2-emitted 

 

PV contribution is lessened.  The 100% represents the reference 4 bed gas and 

electricity category profile for the original grid electricity costs and grid CO2 emissions.  

Similar to previous analysis, the trade-off shifts accordingly to the original electricity 

cost of household without PV system, for a higher LEC than grid.  With energy storage, 

the trade-off extends to higher cost to mitigate the energy consumed from the grid.  

Again, the MO formulation considers any PV module efficiency between 0% to 30%, 

the latter is a likely reachable efficiency for commercial modules by mature PV 

technologies and emerging PV technologies.  The formulation also assumes a threshold 

in energy storage of up to 100kWh. 
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Figure 7.8 (a) and (b) show the optimal values of efficiency (ηPV) and energy storage 

(SSOC
max) and Grid Rating (Egrid

max) respectively, in relation to the weight, w, which 

measures the importance to the economic objective (ALCC). 

In Figure 7.8 (a), by setting w = 0.7 to 1.0, the optimal value of efficiency becomes zero 

in most cases except where the PV LEC is higher than the grid electricity tariff.  On the 

other hand, ηPV increases abruptly as the importance to the economic objective is 

lessened.  Energy storage is only suggested between w = 0.2 to 0.7, to mitigate CO2 

emission with  lower ALLC.  However, since energy storage has a high CO2 impact 

during manufacturing, this is again reduced to 0 when the importance is given for the 

environmental benefit. 

 

* Significance of the economic benefit

# 5 year lifetime
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Figure 7.8: Optimal design variables for multi-objective Z1

ALLC vs Z2
CO2-emitted 
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As shown in Figure 7.8 (b), at grid fixed rating cost at £25/kWh/yr, the optimal value 

for grid connection (Egrid
max) increases suddenly at w = 0.5 since access PV energy 

production exported to the grid have a contribution of lower the net CO2 flows. 

Figure 7.8 (c) and (d) are derived calculations for the PV contribution to the local load 

(fPV) and BOM costs (CBOM) for a 5 year lifetime module, in relation to the weight, w, 

which measures the importance to the economic objective (ALCC). 

As shown in Figure 7.8 (c), for PV LEC lower than grid, the PV contribution cost does 

not improve significantly.  On the other hand, for systems with energy storage, the PV 

contribution to local load is much higher at w = 0.5.  The sudden increases in efficiency 

are also noticed in the PV contribution.  There is a limit to the contribution to the local 

load.  This depends on the correlation between the load and solar resource.  In Figure 

7.8 (d), the BOM costs, which may include a margin for module replacement costs, has 

a wider range for systems under higher solar radiation for a LEC at 41.3p/kWh.  Similar 

to the micro-level MO analysis, integrating PV system at a lower LEC than grid tariff, 

suggests BOM cost lower than £100/m2.Table 7.5 summarises the compromise solution 

sets of the above macro-analysis between the two conflicting objectives the economic 

objective (Z1
ALLC) and the equivalent emitted CO2 (Z2

CO2-emitted).  The compromise 

solution sets’ optimal values for efficiency lie in between 10% to 20%.  These 

efficiencies can also be found in commercial PV modules.  The Trade-off cost of saving 

a kg-eq CO2 from energy imports is much higher for systems with LEC greater than 

grid tariff at 41.3p/kWh. 

The above macro-analysis was based on the additional annual cost required by 

minimising 1kg-eq CO2 from the domestic environment, the trade-off.  In this analysis, 

the domestic environment economic benefit / loss is expressed with NPV of the system.  

Hence the trade-off relationships between the two conflicting objectives the economic 

objective (Z1
NPV) and the environmental objective (Z2

CO2-Benefit) are shown in Figure 7.9 

under various scenarios in Table 7.2.  The NPV is decreased as the CO2 mitigation is 

increased.  NPV greater than zero represents profitable investment.  Having a higher 

LEC than grid, investment is not profitable at any point and hence the trade-off begins 

from 0.  With energy storage, the trade-off extends to lower NPV to mitigate CO2 

impact.  Again, the MO formulation considers a maximum available area of 25m2, the 

latter a typical household roof area.  Similarly, the formulation also assumes a threshold 

in energy storage of up to 100kWh. 
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Table 7.5: Summary of the Compromise Solution Sets for the scenarios in Table 7.1 

CS metrics Obj1 (ALCC ) Obj2 (CO 2 ) η PV f Smax Imax CBOM Trade-off at
£ kg-eq CO2 % kWh kWh £/m2 £/kWh

Scenario 1:
L 1 681.71 753.88 14.27 0.30 2.09 36.65
L ∞ 688.14 711.37 14.67 0.31 2.15 37.97

Scenario 2:
L 1 1479.92 875.96 13.11 0.30 1.90 1.90 166.77
L ∞ 1491.09 860.87 13.25 0.30 1.92 1.92 168.71

Scenario 3:
L 1 1928.36 213.33 11.10 0.36 1.72 251.62
L ∞ 1934.67 204.80 11.14 0.36 1.73 252.71

Scenario 4:
L 1 1065.04 303.26 10.21 0.31 1.55 127.72
L ∞ 1137.29 207.04 11.13 0.32 1.70 140.04

Scenario 5:
L 1 1460.70 895.35 12.98 0.35 0.92 1.61 165.00
L ∞ 1433.33 932.27 12.62 0.34 0.76 1.57 160.14

Scenario 6:
L 1 1007.12 1103.96 10.94 0.28 1.55 137.58
L ∞ 1171.38 882.49 13.05 0.30 1.89 165.94

Scenario 7:
L 1 223.49 323.16 18.36 0.32 2.76 14.06
L ∞ 227.92 207.54 19.46 0.32 2.95 15.49

Scenario 8:
L 1 1171.38 882.49 13.05 0.30 0.00 1.89 165.94
L ∞ 1007.12 1103.96 10.94 0.28 0.00 1.55 137.58

n/a

n/a

-0.04

-0.74 / -0.72

-0.73

-0.75n/a

n/a

n/a -0.15

-0.74

-0.73

-0.75 / -0.72
 

 

Figure 7.10 shows the optimal values of the PV module sizing (APV), in relation to the 

weight, w, which measures the importance to the economic objective (NPV).  It is 

shown that the sudden increase in the area / sizing is just within marginal importance to 

the environmental objective.  On the other hand, energy storage was only considered at 

mid-range (w = 0.5).Table 7.6 summarises the compromise solution sets of the above 

analysis between the two conflicting objectives the economic objective (Z1
NPV) and the 

environmental objective (Z2
CO2-Benefit).  The compromise solution sets’ optimal values 

for area lie in between 0 to 16m2.  Under the investigated emerging PV developments, 

the abatement  
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Plots are plotted with the NNC method.  Dotted points represent the WM results. 

Figure 7.9: Trade-off relationships scenarios between Z1
NPV and Z2

CO2-Benefit 
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Figure 7.10: Optimal design variable - APV for multi-objective Z1

NPV vs Z2
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Table 7.6: Summary of the compromise solution sets for the scenarios in Table 7.2 

CS metrics Obj1 (NPV ) Obj2 (CO 2 ) A PV Abatement Cost Trade-off at
£ kg-eq m2 £/kg-eq CO2 £/kg-eq CO2

Scenario 1:
L1 -731.03 49685.50 12.80
L∞ -738.87 49583.50 12.90

Scenario 2:
L1 -193.81 43880.20 16.01
L∞ -192.40 43922.50 15.97

Scenario 3:
L1 -2163.36 57125.40 12.68
L∞ -2262.91 56871.30 13.25

Scenario 4:
L1 -1469.64 56767.60 12.93
L∞ -1590.39 56301.40 13.93

Scenario 5:
L1 0.00 62800.30 0.00
L∞ -1283.31 59081.10 7.97

Scenario 6:
L1 -1283.31 59081.10 7.97
L∞ 0.00 62800.30 0.00

Scenario 7:
L1 0.00 62800.30 0.00
L∞ -733.94 54802.00 3.75

Scenario 8:
L1 0.00 62800.30 0.00
L∞ -597.75 52989.80 3.83

0.000.06

0.01 -0.03

-0.240.35

-0.390.38

-0.06

-0.35

0.06

0.09

0.35

-0.24

-0.35

0.24

 
 

cost to mitigate CO2 emissions from the grid is lower for emerging technologies than for 

mature technology at the compromise solution set. 

 

This chapter has considered the hypothetical introduction of grid-connected PV systems 

using emerging PV technologies in a domestic environment, using MO approach.  The 

approach was applied on the end-user interest (micro level) and public interests (macro 

levels). 

The mathematical model described in this chapter was developed to determine and 

demonstrate the cost of integrating emerging PV technologies within a domestic 

7.6 Conclusion 
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environment under different scenarios.  In return, the model suggests a compromise set 

between two conflicting objectives which include the optimal integration point of any 

scenario under consideration. 

For a fixed available area and PV LEC, the optimal efficiency, energy storage capacity 

and grid rating are decided, which in turn will result in an optimal PV load contribution 

and BOM cost for a particular fixed lifetime.  On the other hand, for optimal system 

sizing, the PV module area is suggested together with the energy storage capacity and 

grid rating under any BOM module developments on efficiencies, lifetime and costs. 

According to the investigated studies the results can be summarised as follows: 

• The trade-off relationships, between the end-user interests (micro level) or 

public interests (macro level), and economic objective, were clarified from a 

set of non-inferior optimal solutions obtained by this MO approach. 

• The influence of higher and lower radiation due to BIPV applications and 

different locations were also clarified within a MO approach 

• There are particular acceptable technical specifications to be met for 

integrating emerging PV technologies.  Hence markets can be searched and 

prioritised by geographical location, market segments and / or household use, 

dependent on the solar cell characteristics. 

• Future support policies may be required to consider this presented conceptual 

framework in order not to opt for a costly abatement cost.  There is a potential 

that, under no subsidies, low efficient PV solar cells trade-off objectives are 

favourable compared to high efficient solar cells. 

• Storage systems still require further development for low costs and CO2 

impact. 

Although the case studies are related to scenarios, locations and electricity tariffs, this 

PV system integration framework draws attention to the optimal and compromise 

characteristics of PV modules in a PV system and also the optimal and compromise 

sizing of a PV system. 



 



 

 

 

 

This chapter emphasises the need for a decision support system when designing a 

PV system.  Hereinafter, a review on the use of ELECTRE III and similar ranking 

methods in RE applications is given.  The ELECTRE III algorithm is then 

described.  Next, the design and implementation of the decision support tool and 

its evaluation are discussed.  Finally, a summary of the main points on PV 

technology ranks for micro-generation is given. 

 

The decision on a PV technology is based on the compilation and integration of a series 

of factors.  The overall assessment combines the most relevant technical, economic and 

environmental parameters that determine the selection of a PV technology, particularly 

when the number of PV technologies and systems are diversified.  This requests the 

overall consideration of the location, the available PV area, the performance of the 

technology within a system, the efficiency offered by the PV technology, the economics 

of the system and CO2 impact; an approach leading to a number of alternative solutions.  

The application of multi-criteria analysis (MCA) can combine the various viewpoints 

into a standardised evaluation procedure. 

 

Using MCA methods, like ELECTRE III and their variants, has increased many folds in 

the past few years, by helping decision makers (DMs) choose one alternative from a 

discrete set [37, 187-191].  This chapter produces a customised ranking of PV 

Technologies within a domestic environment system using ELECTRE III reflecting 

political, customer and system installers’ perspectives giving importance to certain 

8  

Decision Support System for 

Ranking PV Technologies 

8.1 Introduction 

8.2 Review on the application of ELECTRE III
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criteria.  Current PV programs modelling PV systems produce feasibility studies 

including potential energy production indications.  However, comparison is very 

difficult, and choice is only based on the available equipment by the contractor or 

database available. 

MCA models and approaches are available in the literature, such as the multi-attribute 

utility theory, analytic hierarchy process, weighted sum and others [187].  From the 

outranking methods, the ELECTRE III method, defined in section 8.3, was chosen as it 

makes use of the discordance concept and do not hold "structural properties" in 

outranking relations, which may turn out to be a difficult task [192].  Specifically from 

the ELECTRE family, ELECTRE III method is appropriate if the relative importance of 

criteria can be quantified, while other approaches are specifically designed for selection 

problems (ELECTRE I) and problems assignment (ELECTRE TRE).  On the other 

hand, the other outranking ELECTRE II method is an old version of ELECTRE III and 

ELECTRE IV is used when quantification is not possible.  As a highly developed MCA 

model, the ELECTRE III model allows for the uncertainty and ambiguity that is found 

in predictions and estimations.  However, there are other decision modelling 

approaches, having other various advantages.  Though, there is no difference in 

robustness, for example, between SMART and ELECTRE methods even though there 

are clear differences in the approaches [193].  However, when deciding on one method 

between SMART, PROMETHEE and ELECTRE, ELECTRE III method is preferred 

due to its superior features, discussed above, of partially having non-compensatory 

treatment of the problem and proportional thresholds for imprecise data [194]. 

The ELECTRE family has been extensively used in environmental assessment and 

appraisal, and engineered infrastructure investment [194-203]. The method has also 

been widely applied in a number of models and tools based on outranking approaches 

for multiple criteria decision making (MCDM) and multiattribute rating techniques.  

These applications were applied to municipal solid waste management [198, 204-212], 

personalised ranking of British Universities [213], investment stock selection [214], 

sustainable demolition waste management strategy [215], energy systems selection 

[216], thin-film PV technology processes [217], urban storm water drainage [218] and 

housing evaluation [219].  However, ranking PV systems have not been yet performed.  

Most of these approaches provided excellent insight in related to complex problems, 

which involved conflicting objectives among different stakeholders.  In conclusion, the 

choice of ELECTRE III was also influenced by the above, successful applications. 
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The ELECTRE III method is part of the ELECTRE, ELimination Et Choix Traduisant 

la REalité (ELimination and Choice Expressing REality), outranking decision making 

family within multi-criteria decision analysis methods that originated in Europe in the 

mid-1960s. Bernard Roy and his colleagues at SEMA consultancy company developed 

this method to solve concrete, multiple criteria, real-world problem on firms’ new 

activities using a weighted sum technique.  Though at first the ELECTRE method was 

to find the best action(s) from a given set of actions, the method was further developed 

for ranking and sorting [220]. 

Similar to other outranking methods, the ELECTRE III method, is based on ‘partial 

comparability’.  Therefore, it makes use of four binary relations: I, indifference; P, 

heavy preference; Q, light preference and R, non-comparability.  In addition, thresholds 

of preference (p), indifference (q) and veto (v) are used.  The use of pseudo-criteria was 

introduced so that the method allows for imprecise, indeterminate and uncertain criteria 

intrinsic to complex human being decision processes.  The decision is chosen by 

ranking and sorting among pre-determined decision alternatives described by their 

attributes in discrete decision space. 

The construction and the exploitation of the outranking relations are the two distinct 

phases of the ELECTRE III method illustrated in Figure 8.1.  Construction of the 

outranking relation is performed by comparing alternatives in pairs to discover which 

alternative is quantitatively better.  This is called pairwise comparison.  Each pairwise 

comparison has an outranking relation.  Exploitation of the outranking relation is 

performed by constructing two pre-rankings with two opposite procedures, ascending 

and descending order.  The combination of these two pre-ranking gives the final 

ranking. 

 

8.3.1 Construction of the outranking relations 

The indifference (q) and preference (p) and veto (v) thresholds permit a pseudo-criterion 

to build the concordance index and the discordance index. 

 

8.3.1.1 Concordance index 

The concordance index in (8.1) indicates the truthfulness of the assertion “alternative A 

outranks alternative B”. If C = 1, the assertion is true, and, if C = 0, the assertion is 

false.  The graphical representation is illustrated in Figure 8.2. 

8.3 The ELECTRE III method
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Figure 8.1: ELECTRE III process flow 

 

 

 
Figure 8.2: Graphical representation of the Concordance Index 
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where: 

wi is the criterion (i) weight, 

n is the criteria number, 

zi(X) is the performance of the alternative X with respect to the criterion, 

qi is the indifference threshold for the criterion i, and 

pi is the preference threshold of the alternative on the criterion i 

 

Hence, from Figure 8.2, the three relations between two alternatives A and B are: 

i. Indifference (A I B): zi(B)-zi(A)≤qi, is an agreement on the statement “A 

outranks B” 

ii. Weakly Preferred (A Q B): qi<zi(B)-zi(A)<pi, is a part agreement on the 

statement “A outranks B” 

iii. Stricly Preferred (A P B): zi(B)-zi(A) ≥ pi, is a disagreement on the statement 

“A outranks B” 

 

8.3.1.2 Discordance index 

The optional discordance index is used to be cautious measure to refuse the assertion “A 

outranks B”, if the discrepancy of performances between the alternative A and B is 

higher than the veto threshold vi, on a criterion i.  The discordance index for each 

criterion i is given in (8.2).  The graphical representation is shown in Figure 8.3. 
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where: 
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Figure 8.3: Graphical representation of the Discordance Index 

 

zi(X) is the performance of the alternative X with respect to the criterion i, 

pi is the preference threshold of the alternative on the criterion i, and 

vi is the veto threshold for the criterion i. 

 

From Figure 8.3, if there is veto threshold, the three relations between two alternatives 

A and B are: 

i. Indifference (A I B): zi(B)-zi(A)≤pi, is an agreement on the statement “A 

outranks B” 

ii. Weakly Preferred (A Q B): pi<zi(B)-zi(A)<vi, is a weak disagreement on the 

statement “A outranks B” 

iii. Strictly Preferred (A P B): zi(B)-zi(A) ≥ vi, is a disagreement on the statement 

“A outranks B” 

 

8.3.1.3 Credibility matrix 

The Credibility Matrix, using the concordance and discordance indices, is constructed in 

(8.3).  The Credibility Matrix indicates if the outranking hypothesis is true or false.  The 

degree of credibility is equal to the concordance index, in the case of concordance index 

being higher or equal to the discordance index of all criteria.  Otherwise, the degree of 

credibility is equivalent to the concordance index directly related to the magnitude of 

those discordances. 



The ELECTRE III method  175 
   

 

( )
( )( )
( )( )( )

( ) ( ) ( )

,

( , )  , ( , )

1 ,( , )
( , )

1 ,

where ,  is the set of criteria for which , ,

i

i

i J A B

i

C A B if D A B C A B i

D A BS A B
C A B otherwise

C A B

J A B D A B C A B

∈

⎧ ≤ ∀
⎪

−= ⎨
•⎪ −⎩

>

∏ (8.3) 

 

8.3.2 Exploitation of the outranking relations 

8.3.2.1 Distillation procedures 

The distillation procedure ranks the alternatives in two pre-orders.  The first pre-order is 

found with a descending distillation, by selecting the best-rated alternatives initially and 

finishing with the worst ones.  The best alternatives are extracted from the whole set of 

alternatives by applying very strict rules of (8.4).  Within this sub-set, the best 

alternatives are then selected by applying less stringent rules of (8.6).  The procedure 

continues with incrementally minor restrictive rule and incrementally minor sub-sets of 

alternatives.  The procedure finishes when only one alternative is leftover or a set of 

alternatives cannot be disconnected.  The second ascending distillation uses the same 

process.  This distillation is performed on the original set of alternatives, by removing 

alternative(s) from the best ones resulted from first distillation.  Therefore, a fresh sub-

set is found at each distillation.  This sub-set will contain the best alternative(s) of the 

outstanding set.  At every distillation, the found alternative(s) are ranked on a lower 

position.  Hence, the worst rated alternatives are selected first.  For the distillation, the 

hypothetical condition is that an alternative A is preferred to B if the degree of 

credibility of “A outranks B” is above a threshold λ2, and considerably above the degree 

of credibility “B outranks A” in (8.4). 

  ( ) ( ) ( ) ( )2 0,  AND , ,S A B S A B S B A sλ λ> − >  (8.4) 

where λ2 is the principal credibility index, just underneath the cut-off level λ1 as 

follows:  

  ( ){ } ( ) { }
12 ,max , ,S A B S A B A B Gλλ ≤= ∀ ∈  (8.5) 

where G is the group of alternatives. λ1 is the subsequent cut-off level: 

  ( )1 0 0sλ λ λ= −  (8.6) 

where λ0 is the uppermost degree of credibility in the subsequent credibility matrix:  

  ( )0 ,max ,A B G S A Bλ ∈=  (8.7) 

and s(λ0) is the following discrimination threshold:  
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  ( )0 0s λ α βλ= +  (8.8) 

where α=0.3 and β=-0.15 are the two values recommended [220] 

 

With successive distillations, the cut-off level λ1 is reduced every time, making the 

condition weaker.  Therefore, it is much easier for A to be preferred than B.  The 

discrimination threshold s(λ) contains some parameters values α and β, recommended at 

α=0.3 and β=0.15 [220].  Other values may be used but may change the ranking, to 

some extent. 

 

8.3.2.2 Extraction 

The extraction from the distillation procedure is performed on scores.  Whenever A 

outranks B, A has a score of +1 (strength) and B is given -1 (weakness).  The final 

qualification score for each alternative is the sum of the strengths and weaknesses.  For 

the descending distillation, the highest qualification scored alternative is ranked and 

removed from the credibility matrix. This process is repeated until all alternatives 

remaining are ranked.  If two or more alternatives result with the identical qualification 

score, the process is done again within this subset.  If an alternative has a higher 

qualification score, the alternative is ranked.  On the other hand if the utmost degree of 

credibility λ0 is equal to 0, then alternatives are declared indifferent.  Similarly, 

ascending distillation procedure extraction is an iterative process with the difference 

that alternatives are chosen with the lowest qualification score. 

 

8.3.2.3 Final ranking 

The final ranking is the collective results of the two pre-orders into a ranking matrix 

with the following four possible cases: 

i. A P+ B:  A is better than B (i.e. A is ranked over B in both distillations, or A is 

higher than B in one distillation, and has the identical ranking in the other 

distillation), 

ii. A R B:  A is incomparable to B (i.e. A is ranked over than B in one distillation 

but B is ranked over A in the other distillation), 

iii. A I B:  A is indifferent to B (i.e. A has the same ranking than B in both 

distillations), and 
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iv. A P- B:  A is worse than B (i.e. A is ranked below B in both distillations or A 

is ranked below B in one distillation and has the identical rank in the other 

distillation). 

The final ranking is achieved by adding the number of P+.  In case of same scores, the 

similarity between the two alternatives with the identical score decides between an 

indifferent or incomparable relation. 

 

The alternative scenarios for PV micro-generation were compared with economic, 

technical and environmental categories, to perform an overall assessment.  For these 

different categories, the most relevant parameters were chosen as shown in Table 8.1. 

The importance of criteria differs from different stakeholder.  The importance is 

reflected in weightings for the respective criteria.  Three different perspectives are 

considered in this study.  These perspectives have different allocated weights on criteria.  

These are political, customer and contractor.  The case study is based on the 4 Bed gas 

and electricity category, grid-connected PV system at optimal slope in UK Manchester 

under no financial support schemes.  Hence the presented results and calculations are 

based on the specific assumptions.  Thus, the results and discussions in this chapter 

must be seen in this context.  Though, the framework developed can be applied with 

other assumptions.  The studied alternative scenarios compare PV technologies on a 

25m2 available area for micro-generation.  These are presented in Table 8.2. 

The quantitative criteria, that are PV contribution, Net kg-eq CO2 and Net Present Value 

(NPV), are calculated for a system lifetime of 30 years, as defined in previous chapters.  

The energy management system using an optimised time series simulation considers 

distinct PV technology parameters including PV module efficiency, PV module 

efficiency degradation limit, system performance ratio and CO2 content during 

manufacturing. 

 

Table 8.1: The different chosen criteria for evaluation and their meaning 

C1 PV Contribution (f PV ) PV to local load contribution (ratio)

C2 Module Design Indication of flexibility

C3 Net kg-eq CO2 Net CO2-eq (surplus / deficit)

C4 Aesthetic Indication of the level of Aestheticity possible

C5 Net Present Value Net Present Value of the PV system

C6 Maturity Indication of the maturity of the module technology

Technical

Environmental

Economic
 

8.4 The evaluation criteria
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Table 8.2: Possible PV technology alternatives for PV micro-generation 

Economic

Technology PR η PV δ PV L PV MJ/m 2 kg-eq CO 2 £/m 2

Alternative 1 A1 mono-Si 0.85 22% 80% 30 6034 241 660

Alternative 2 A2 multi-Si 0.82 17% 80% 30 3870 155 510

Alternative 3 A3 a-Si 0.94 9% 80% 30 1110 44 248

Alternative 4 A4 CIS 1 11% 80% 30 2965 118 366

Alternative 5 A5 CdTe 0.66* 11% 80% 30 1828 73 366

Alternative 6 A6 emerging PV (a) 1 5% 50% 5 - 30 50

Alternative 7 A7 emerging PV (b) 1 50% - 30

EnvironmentalTechnical

Technology Assumed and Estimated Parameters

Alternative 8 A8 emerging PV (c) 1 50% - 30

Alternative 9 A9 emerging PV (d) 1 50% - 30

*This was one of the first PR calculated on a demostration modules.  PR for CdTe may have improved 
significantly

(b), (c) and (d) refer to reference, optimistic and pessimistic technology anticipated development 
respectively in efficiency, lifetime and price of emerging PV technologies
(b), (c) and (d) refer to reference, optimistic and pessimistic technology anticipated development 
respectively in efficiency, lifetime and price of emerging PV technologies
(b), (c) and (d) refer to reference, optimistic and pessimistic technology anticipated development 
respectively in efficiency, lifetime and price of emerging PV technologies  
 

The qualitative measures are other elements taken into account.  These are ranked from 

1 to 3, the higher the number, the better the alternative.  Module Design reflects the 

flexibility of the PV module within a system design for BIPV and ease of installation.  

Aesthetic measure reflects the possible visual impact of the modules.  In general BIPV 

systems, possibly frameless modules, have lower visual impact than bolt-on solutions.  

Maturity of the PV technology indicates the needs for more research and development 

investments.  Hence mature technologies tend to be less expensive than emerging 

technologies due to learning by doing attitudes. 

Table 8.3 presents the performances of the nine alternative solutions, which originate 

from the estimates and assumptions in Table 8.2, from the different analytical 

approaches in previous chapters namely NPV, fPV, and the CO2 emissions.  The data for 

qualitative criteria are relative values, which are compared with each other.  These 

values reflect the technology status under three technologies namely crystalline 

modules, thin-film and emerging technology.  It is evident that no scenario stands out 

completely from others in all criteria, which entails a multi-criteria analysis. 

 

The thresholds and the importance coefficients are listed in Table 8.4.  The calculated 

 

 

8.5 Weights and threshold values
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Table 8.3: Performance of alternative scenarios 

C1+ C2+ C3- C4+ C5+ C6+

A1 0.34 1 (19439) 1 (14242) 3

A2 0.32 1 4531 1 (9957) 3

A3 0.29 2 26186 2 (3763) 2

A4 0.31 2 16713 2 (6527) 2

A5 0.28 2 32260 2 (6856) 2

A6 0.22 3 48725 3 (2123) 1

A7 0.26 3 32570 3 (967) 1

A8 0.28 3 28076 3 248 1

A9 0.20 3 49281 3 (3503) 1

+ high values are best alternatives

- low values are best alternatives

 

indicators are based on estimations and assumptions.  The selected threshold are 15% 

for the indifference threshold, 30% for preference threshold and 3 times of performance 

threshold, that is 90% veto threshold as suggested [195, 221].  On the other hand, the 

qualitative indicators’ thresholds were given as 1 for the indifference threshold and 1.5 

for preference threshold. 

The Simos method with updates [201, 222-225] was used to calculate the weights.  The 

weights are first given to the quantitative criteria followed by the qualitative ones.  The 

political perspective which is the basis for any renewable support schemes in which 

case would anticipate a balance between all categories.  Hence equal weights to the 

categories are assigned.  Table 8.5 shows the calculation for the political perspective 

with all categories having equal ranks on the quantitative and qualitative indicators 

respectively.  The other weights for other perspectives, customer and contractor, are 

given in Table 8.4. 

 

Table 8.4: Weights and threshold values 

Criteria C1 C2 C3 C4 C5 C6

Indifference (q ) 15% 1 15% 1 15% 1

Preference (p ) 30% 1.5 30% 1.5 30% 1.5

Veto (v ) 90% n/a 90% n/a 90% n/a

Political Importance (weight ) 0.259 0.074 0.259 0.074 0.259 0.074

Customer Importance (weight ) 0.238 0.095 0.19 0.048 0.29 0.143

Contractor Importance (weight ) 0.271 0.104 0.208 0.042 0.271 0.104  
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Table 8.5: Calculating criteria weight using the Simos Method. 

Ranking ra Criteria No. of Criteria in Rank Weight, W Average Weight Relative Weight Total

1 C2 C4 C6 3 1, 2, 3 (1+2+3)/3=2 7.41 22.22

2 - - (4) - - -

3 - - (5) - - -

4 C1 C3 C5 3 6, 7, 8 (6+7+8)/3=7 25.93 77.78

5 - - (9) - - -

6 - - (10) - - -

6 27b 100.00

a - from worst to best

b - sum of weight excluding parenthesis  
Political Perspective 

 

The weights of the different criteria of these categories are discussed.  The political 

perspective, which is the baseline of this study, considers equal importance to technical, 

environmental and economic parameters, as described in the previous section.  Since the 

social behaviour was not studied, the rankings of the criteria for the customer and the 

contractor were based on a similar study for battery technologies for electric vehicles 

[226].  Customers and contractors tend to look more into the technical and economic 

criteria rather than the environmental one. 

The customer perspective is driven by economic benefit.  Customers do not often take 

into account the PV contribution, whether there is a net export or import.  Hence this 

parameter is of less important than the political perspective.  On the other hand, the 

flexibility of a technology can make a difference for available area and hence such 

parameter may have a slightly higher importance to customers.  The closer the NPV is 

to 0 or above, the greater potential benefit.  In addition, the maturity of the technology 

will probably attract attention due to its reliability. 

The manufacturer is driven mainly in balance by the technical and economic indicators.  

Hence the weights for these criteria are equal or slightly higher than the political 

perspective. 

 

Different perspectives are assessed and compared in this study.  These perspectives are 

the sensitivity analysis of the MCA results.  This sensitivity, using different weights, 

analyses the results from the three perspectives. Each perspective has different criteria 

preferences signified by their weights. 

8.6 Sensitivity analysis 
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Further sensitivity analysis on the thresholds of the model is performed in order to 

identify the effect on the original results.  The sensitivity was done on the p, q and v by 

varying the initial values at ±10% and ±20%. 

 

The calculations for the multi-criteria model ELECTRE III were implemented by the 

ELECTRE III program which was made available for academic purposes [227].  The 

final ranking of all the alternatives under three perspectives is shown in Figure 8.4.   

Table 8.6 is the result scores for the degree of credibility matrix for the political 

perspective, calculated from the concordance and discordance matrixes.  Meanwhile, 

Table 8.7 is the corresponding ranking matrix, described in section 8.3.1.1. 

 
Figure 8.4: Final Ranking under three perspectives 

 

Table 8.6: Credibility Matrix for the political perspective 

A1 A2 A3 A4 A5 A6 A7 A8 A9

A1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

A2 0.00 1.00 0.00 0.47 0.74 0.00 0.00 0.00 0.00

A3 0.00 0.74 1.00 0.90 1.00 0.99 0.80 0.74 1.00

A4 0.00 0.74 0.74 1.00 1.00 0.74 0.74 0.10 0.74

A5 0.00 0.74 0.74 0.74 1.00 0.74 0.49 0.00 0.74

A6 0.00 0.29 0.48 0.48 0.63 1.00 0.79 0.45 1.00

A7 0.00 0.53 1.00 0.67 1.00 1.00 1.00 1.00 1.00

A8 0.00 0.67 1.00 0.85 1.00 1.00 1.00 1.00 1.00

A9 0.00 0.24 0.48 0.48 0.57 1.00 0.43 0.22 1.00  

8.7 Results and discussions
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Table 8.7: Ranking Matrix for the political perspective 

A1 A2 A3 A4 A5 A6 A7 A8 A9

A1 I P R R P R P- P- P

A2 P- I R P- P R P- P- P

A3 R R I R P P P- P- P

A4 R P R I P P P- P- P

A5 P- P- P- P- I P- P- P- P-

A6 R R P- P- P I P- P- P

A7 P P P P P P I I P

A8 P P P P P P I I P

A9 P- P- P- P- P P- P- P- I  
 

The top-ranked alternatives are A7 and A8.  These alternatives are for certain assumed 

emerging PV technology developments over system lifetime.  These assumed 

developments are based on a reference (stated targets) or optimistic technology 

development, discussed in section 4.4.  These alternatives gained their high rank mainly 

due the quantitative economic benefit, high NPV, because of low capital investment 

costs.  It should be mentioned that these technologies are still in the experimental stages.  

Hence, one cannot distinguish which emerging technology will ultimately make a 

successful development process in accordance to the assumptions and estimates taken.  

The next alternatives are crystalline silicon and thin film technologies (CIGS and 

amorphous Si) which are incomparable as seen in Figure 8.4.  The alternatives that 

follow are for emerging technologies with fixed replacements and no technology 

developments and pessimistic developments (A6 and A9 respectively).  Meanwhile, it is 

important to note that alternative A5 (CdTe) scored last mainly due to is low PR.  Over 

the last years, PR for this technology might have significantly improved.  In fact 

assuming a more plausible PR of 0.80 for all technologies will range A5 (CdTe) with 

other A4 (CIGS) as shown in Figure 8.5.  Applying sensitivity to the threshold values of 

the model for the results in Figure 8.4 shows stability especially in the top ranks of the 

final ranking as seen in Table 8.8. 

 

 
Figure 8.5: Final ranking under all three perspectives with 0.80 PR 
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Table 8.8: Sensitivity analysis 

Sensitivity Final Ranking Sensitivity Final Ranking

-10% (q) stable -20% (q) stable

+10% (q) A8 - A7 - A1 A3 - A2 A4 - A6 - A9 - A5 +20% (q) A8 - A7 - A1 A3 - A2 A4 - A6 - A9 - A5

-10% (p) A8 A7 - A1 A3 A4 - A2 A6 A5 - A9 -20% (p) A8 A7 - A1 A3 A4 - A2 A6 A5 - A9

+10% (p) A8 - A7 - A1 A3 - A2 A4 - A6 A9 - A5 +20% (p) A8 - A3 A7 - A4 A1 - A6 A2 - A9 - A5

-10% (v) A7 A8 - A1 A3 A4 - A2 A5 - A6 A9 -20% (v) A7 A8 - A1 A3 A4 - A2 A5 - A6 A9

+10% (v) A7 A8 - A1 A3 A4 - A2 A6 A9 - A5 +20% (v) A7 A8 - A3 A4 - A2 - A5 A1 - A6 A9

-10% (q) stable -20% (q) A8 A7- A1 A3 - A2 A4 - A6 A9 - A5

+10% (q) A8 - A7 - A1 A3 - A2 A4 - A6 - A9 - A5 +20% (q) A8 - A7 - A1 A3 - A2 A4 - A6 - A9 - A5

-10% (p) A8 - A7 - A1 A3 - A2 A4 - A6 - A9 - A5 -20% (p) A7 A8 - A1 A3 A4 - A2 A6 - A9 - A5

+10% (p) A8 - A7 - A1 A3 - A2 A4 - A6 - A9 - A5 +20% (p) A8 - A7 - A1 A3 - A2 A4 - A6 - A9 - A5

-10% (v) A8 - A7 - A1 A3 - A2 A4 - A6 A9 A5 -20% (v) A8 - A7 - A1 A3 - A2 A4 - A6 - A9 A5

+10% (v) stable +20% (v) A8 A7 - A3 A4 - A2 - A1 - A6 A9 - A5

-10% (q) stable -20% (q) A8 A7 - A1 A3 - A2 A4 - A6 - A9 - A5

+10% (q) stable +20% (q) stable

-10% (p) A8 A7 - A1 A3 - A2 A4 - A6 - A9 - A5 -20% (p) A8 A7 - A1 A3 A4 - A2 A6 A5 - A9

+10% (p) stable +20% (p) stable

-10% (v) A8 - A7 - A1 A3 - A2 A4 - A5 A6 A9 -20% (v) A8 - A7 - A1 A3 - A2 A4 - A5 A6 A9

+10% (v) A8 - A7 - A1 A3 - A2 A4 - A6 A9 - A5 +20% (v) A8 A7 - A3 A4 - A2 - A1 A5 - A6 A9

Contractor: A8 - A7 - A1 A3 - A2 A4 - A6 - A9 - A5

Customer: A8 - A7 - A1 A3 - A2 A4 - A6 A9 - A5

Political: A8 A7 - A1 A3 A4 - A2 A6 - A9 - A5

 
 

The general conclusions of this MCA study were taken in the context of a number of 

assumptions and estimates.  These assumptions and estimates are the result of the 

compilation and integration of other sections in this research work and available 

literature.  The comparison of different technologies is always a difficult task as it 

involves a wide range of parameters.  With PV technologies increasing in number over 

three generations, the assessment of such technologies on an application is not an 

exception.  The technologies taken into consideration are PV technologies related to a 

domestic environment.  Emerging PV technologies may vary in concepts and 

approaches.  However, general assumptions were taken on these technologies which 

require meeting certain common requirements before market integration, as seen in 

previous chapters.  These emerging PV technologies seem to be the drive towards the 

3rd generation of PV technology. 

As we have seen throughout this research, the economic net-benefit for today’s 

commercial PV technology is still hindered by the expensive PV module costs.  The 

research has also investigated a number of scenarios having lower costs and more 

8.8 Conclusions 
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frequent replacements.  The MCA evaluated nine alternative scenarios including 

developments estimates and assumptions for emerging PV technologies within a 

domestic environment, by using the ELECTRE III method for three categories: 

technical, environmental and economic.  However, a reduction in cost is needed, and 

technology developments are required for a preferential ranking.  In order to achieve 

this, market growth is necessary if there is no revolution that changes suddenly PV 

technology.  Hence, financial support is also a key stimulus for emerging PV 

technologies in a domestic environment.  Today thin-film (TF) PV technology and 

crystalline (c-Si) PV technology are a competitive edge in the market, and this study 

shows certain insuperabilities.  In this context, crystalline technologies are more 

expensive.  However, this PV technology offers a much better CO2 benefit than 

emerging technologies due to high efficiency levels. 

On a technical point of view, all technologies can have a PV contribution to load in the 

region of 20% to 34% with respect to the system PR, PV module efficiency and PV 

module efficiency degradation.  However, due to future uncertainty in PV support 

schemes the issue of PV contribution versus exports is a matter of further discussions. 

The environmental impact of PV modules is far less than using other conventional 

sources of energy.  In addition, even though c-Si modules have the highest energy 

impact amongst technologies, there is a favourable net benefit of CO2 emission.  The 

reason is mainly due to high module efficiencies.  In fact the PV generation is higher 

than the local demand.  This gained in ranking amongst other technologies.  Hence, in 

this context c-Si resulted in a significant environmental ‘positive’ rating. 

On the other hand, the overall net economic benefit for c-Si technology is the lowest 

since there is not much benefit from exports.  Meanwhile for emerging technologies the 

number of replacements distant by time will lower the initial investments costs, 

something which so far is not common in the PV industry for a PV module. 

So far, any PV technology can be integrated within a domestic environment as a 

sustainable source of energy.  Hence this MCA study is a preferential indicator for any 

PV technology integration within a competitive market under three categories namely 

technical, environmental and economic. 



 

 

 

 

This chapter highlights the main conclusions as well as contributions of the work 

undertaken in this research and suggests future research work. 

 

The introduction of emerging PV technologies for micro-generation has its own 

challenges with regards to lifetime, efficiencies and price / costs for successful market 

penetration.  In the short and medium term, emerging PV technologies are likely to 

exhibit low lifetime expectancy and low efficiency, nevertheless low-cost PV modules 

with more possibilities for BIPV applications.  The aim of this research work was to 

provide complimentary viewpoints from the technical, economic, as well as 

environmental viability of emerging PV technologies for micro-generation, with a focus 

on the hybrid organic-based QD solar cells, developed within the project consortium.  

The uniqueness of this work is that, throughout this research, the issues for 

commercialisation of emerging PV technologies for micro-generation, regarding to low 

efficiency, short lifetime and high efficiency degradation, as well as low-cost / price 

were extensively analysed in every aspect. 

Several companies are promising the availability of new cutting edge PV technologies 

such as SolarPrint, G24innovations, Hydrogen Solar, Dyesol, Aisen Seiki and Sony 

Corporation, for dye sensitised solar cells, and Konarka, for organic solar cells.  Due to 

the potential of cheaper costs during mass production compared to mature PV 

technologies, by around one order of magnitude, these technologies are evolving as 

having the potential for the third generation of PV technologies.  This will stimulate 

much more the PV market growth that has so far been dominated by costly PV modules.  

On the other hand, hybrid organic-based QD solar cells combine the advantages of both 

organic and nanoparticle inorganic semiconductors.  Hence there is a significant 

9  

Conclusion 

9.1 Overview
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potential for these hybrid organic-based QD solar cells to increase in PV conversion 

efficiency amongst other characteristics. 

Similar to mature TF PV technologies, production of ultra thin flexible PV devices 

offers the flexibility for a higher potential for BIPV applications.  These devices allow 

easier integration into appliances and building materials, while also being able to tune 

the solar cell colour through chemical structure [12, 13]. 

Overall a PV policy framework requires careful understanding of the specific site 

location that allow threshold for profitable operation of PV plants [228].  However, 

return on investment is not the only consideration affecting PV support schemes.  

Sustainability is a key measure which is enabling emerging PV technologies to compete 

with mature technologies for the micro-generation market.  In this respect, the economic 

value of the project and cost / price of PV modules, the PV module efficiency, the local 

load fulfilment and the system design rating, as well as the environmental factors, such 

as EPB-T, NET and CFP, are important features for a holistic commercialisation 

approach. 

Although design, sizing and planning tools for PV micro-generation systems are 

available, there are presently no adequate approaches to integrate emerging PV 

technologies in comparison with current PV technologies.  In fact, as discussed during 

the literature review, there is a wide range of methods and approaches to address the 

integration of PV technologies into energy systems.  However, despite the diversity of 

these methods, none has addressed emerging PV technologies on sustainability 

competitiveness that includes economic, technical and environmental aspects.  Hence 

this research is novel because it deals with the practical implication of low-cost 

emerging solar cells coming to the very fast growing PV market, and addresses 

exhaustively the scenarios for frequent replacements of PV modules within a multi-

disciplinary context.  This is done by extending and developing methods and 

approaches already known in this field.  The research is conducted at a systems level 

rather than at component level.  This is due to some elements, such as characteristics, 

system performance, module sizes and inverter integration, which are still unknown at 

this time. 

In general, the conclusions have to be taken in context of the assumptions and estimates 

taken at the time of the research.  However, it is clear that the challenges that emerging 

PV technologies face to integrate into the micro-generation market can be transferred to 

opportunities.  The following general conclusion can be drawn from this research: 
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i. Less durable emerging PV technologies may require higher system ratings for 

same energy production as mature PV technologies, with respect to efficiency 

degradation.  In addition, having low defined efficiency limits with respect to 

lifetime (that is lower than 80%) may require a diligent system design to 

maintain system performance and reliability during the module lifetime. 

ii. The Price Reduction Factor (PRF) is a good matric to measure competitiveness 

with mature technologies.  PRF less than one order of magnitude is achievable if 

lifetime is higher than one year, while having a module life expectancy over 10 

year will not significantly change this factor.  On a cautious note, as system 

lifetime is extended the PRF is increased. 

iii. Hybrid organic-based QD PV modules may be slightly more expensive than 

OPV.  However these advance TF technologies are expected to have better 

performance than OPV ones.  The estimated range with assumed mass-

production process in place is between £0.22/Wp and £2.11/Wp.  The higher end 

describes module on glass substrate.  The higher end of the range is found not 

competitive with mature PV modules when considering the durability of 

emerging PV organic-based thin film modules.  Hence flexible module with no 

glass substrate is recommended. 

iv. With a module cost based at £50/m2 the module performance, efficiency and 

lifetime require improvement for competitive integration.  The BOS costs which 

nowadays are in comparison with module costs may become even more 

expensive within a PV system employing emerging PV technologies.  Hence 

BOS costs reductions are also recommended.  These above factors are also 

important so as not to lose the competitiveness with other mature PV 

technologies already in the market and the grid parity target. 

v. The life cycle impact analysis and their evaluation for two structures assumed 

for hybrid organic-based QD PV module were found to be competitive with 

other PV technologies.  A compromise between PV module lifetime and 

efficiency can lead to sustainable products.  In this case, hybrid organic-based 

QD PV modules with lifetime and efficiency higher than 5 years and 5% 

respectively are favourable. 

vi. Market penetration can be prioritised by geographical location, market segment 

and / or household energy consumption with acceptable PV module 

characteristics: efficiency and price target for a given lifetime, within a domestic 
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environment.  Future support policies may be required to consider the presented 

conceptual framework, that suggests trade-off relationships between the end-

user interests (micro level) or public interests (macro level), and economic 

objective, in order not to opt for a costly abatement cost.  There is a potential 

that, under no subsidies, low efficient PV solar cells trade-off objectives are 

favourable compared to high efficient solar cells.  In addition storage systems 

still require further development for low cost and CO2 impact. 

vii. Optimistic and targeted progress in emerging organic-based PV, even with 

higher degradation but same system performance as mature PV technologies, 

may lead the ranking in PV technology when considering an investment.  This 

showed that development is continuously required for emerging PV technologies 

to be preferred over mature PV technologies. 

 

The above issues have been the focus of an extensive literature review of the research 

on PV technologies for micro-generation.  Particular focus has been given to emerging 

PV technologies and the hybrid organic-based PV QD solar cell developed within the 

project.   

The literature review, which is easily accessible to all stakeholders, including domestic 

user, manufacturer and policy makers, has highlighted the challenges to the growing 

interest in emerging PV technologies.  Taking into consideration the objectives set out 

in Chapter 1, the main achievements and contributions of this research are summarised 

in the following sections. 

9.2.1 Investigation and identification of cost boundaries 

Economic competitiveness is normally compared on the basis of the following two 

factors: 

i. life cycle energy outputs of the system, and 

ii. life cycle investment costs. 

These two factors influence the cost / price boundary for any emerging PV technology 

for micro-generation.  The energy production is a function of high efficiency 

degradation while the project costs depend on future costs arising from regular 

replacements of PV modules.  The developed lifetime-adjusted approach is based on life 

cycle costing (LCC) techniques.  Therefore, it begins with the comparison of energy 

outputs with current PV technologies within a marketplace, taking into account PV 

9.2 Achievements and contributions of this research
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module efficiency, PV module efficiency degradation and lifetime.  The investment 

costs for both emerging and mature PV technologies are then balanced.  The main 

achievement and contribution of this research in the area of the economic 

competitiveness can be summarised as follows: 

A lifetime-adjusted calculation methodology for determining cost boundaries of 

emerging PV technologies was developed.  The methodology takes the following 

aspects into account: 

• Efficiency degradation 

• Emerging PV module lifetime 

• Emerging PV module efficiency 

• System lifetime, and 

• Financial parameters 

The overall lifetime-adjusted approach was formulated as a two-stage approach for 

equivalent energy production and then equivalent investment cost when compared to a 

mature PV technology.  This methodology was developed in chapter 3. 

As a result of the methodology, the system ratio (SR), which is a design factor for 

equivalent energy production, and price reduction factor (PRF) can be estimated.  

Preliminary indications show a PRF of one order of magnitude, which is the expected 

cost reduction potential in emerging PV technologies, is feasible from a lifetime greater 

than 2 years even though 3 to 5 years lifetime was suggested in literature as a feasible 

commercialisation point. 

Understanding future PV cost scenarios is critical for the formulation of public policies.  

It is worth noting that public policies affect the investment outcomes, such as pay-back 

times, and also the renewable energy (RE) market with regard to variations in supply 

and demand chains.  Hence the upper price boundaries for emerging PV technologies 

compared with the mature PV technologies are crucial to enter the market competitively 

[36]. 

 

9.2.2 Development of organic-based PV module cost model 

The few available cost models on emerging PV technologies, based on DSSC or OPV, 

do not consider large-scale manufacturing, and therefore, are based on lab-scale 

production.  In addition, cost models for emerging hybrid organic-based QD solar cells 

do not exist.  The first cost model for a hybrid organic-based QD solar cell has been 

developed in this work.  A key feature of this cost model includes the consideration of a 
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large-scale manufacturing, and different efficiency and lifetime considerations.  The 

interest in emerging organic-based QD solar cells is important as these technologies 

offer the potential for higher efficiencies in the long term. 

The developed model was used to carry out further investigations on the impact of a 

number of factors including efficiency, module lifetime, irradiance, BOS cost and PV 

energy price.  These investigations led to the establishment of boundaries on market 

geographical location, efficiencies and BOS cost reductions for RE generation from PV 

to attain grid parity.  The anticipated development of emerging organic-based PV 

technology was also given with respect to price, lifetime and efficiency. 

 

9.2.3 Development of hybrid organic-based PV life cycle analysis 

Sustainable weightings on typical hybrid organic-based QD PV modules were 

developed based on an extended LCA methodology.  The LCA methodology was 

extended to take into account low lifetime, low efficiency PV modules to assess the 

NER and CFP matrices for the sustainability boundaries, that is lifetime and efficiency.  

This extended LCA is based on a published contribution by the author [4] and is 

presented in chapter 5. 

Emerging PV technologies LCA, based on DSSC or OPV, do not usually consider 

system integration.  In addition, LCA for hybrid organic-based QD cells does not exist. 

This research has also added Life Cycle Inventory for ‘green’ synthesis of PbS QD.  

Eco-invent database and openLCA software were used to model the whole system 

integration for a coherent comparison with other PV systems using mature PV 

technologies. 

 

9.2.4 Development of conceptual multi-objective optimisation framework 

A system base level optimisation for the optimal integration of PV technology was 

developed.  Parameters such as optimal efficiency / area, energy storage and grid 

interconnection were evaluated. 

Therefore, the optimisation problem was formulated as an hourly time series mixed 

integer programming (MIP) for two on-grid PV system configurations namely with and 

without energy storage.  The overall problem minimises the annualised life cycle cost 

(ALCC) or maximises the NPV of the system on the economic objective.  However, 

other objectives are also considered.  These objectives are (i) minimising grid energy 

imports on a micro-level objective, or (ii) minimising CO2 emissions on a macro-level 
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objective.  These added objectives, which in total consider the economic, technical and 

environmental factors, formed the basis for development of the conceptual framework 

for multi-objective optimisation for PV market penetration subject to energy 

management constraints in a domestic environment, grid interconnection and energy 

storage response constraints. 

Practical application of multi-objective optimisation for a conceptual framework to 

integrate emerging PV technologies for micro-generation was illustrated on a number of 

studies.  The studies were tailored for a domestic environment.  For the case without 

subsidies, low efficiency, low cost PV solar cells, are favoured compared to high 

efficient high cost solar cells.  In addition, energy storage systems still require further 

development in order to minimize costs and CO2 impact.  The suitability of this 

conceptual framework is highlighted in Chapters 6 and 7.  This PV system integration 

framework draws attention to the optimal and compromise characteristics of PV 

modules in a PV system and also the optimal and compromise sizing of a PV system. 

 

9.2.5 Demonstration of multi-criteria analysis for PV micro-generation 

A multi-criteria analysis (MCA), using the ELECTRE III method, was employed to 

compile and integrate assumptions and estimates presented in this research work.  This 

is the first time PV technologies for micro-generation have been ranked.  The 

ELECTRE III method, explained and illustrated in chapter 8, was used to analyse a 

fixed available area site with both qualitative and quantitative criteria based on 

technical, economic and environmental factors.  This chapter has demonstrated the 

ELECTRE III method as a useful decision support tool for PV technologies.  The 

general conclusions of this MCA study by the ELECTRE III have to be taken in the 

context of a number of assumptions and estimates that are the result of the compilation 

and integration of other sections in this research work and available literature. 

 

The important factors for emerging PV technologies regarding economic 

competitiveness, technical boundaries and environmental sustainability are investigated 

in comparison with mature PV technologies for micro-generation.  Taking this 

assumption of adopting emerging PV technologies for micro-generation, with a focus on 

the hybrid organic-based QD PV investigated in this project, methodologies and 

approaches were developed, applied and /or extended.  In the following subsections, the 

9.3 Suggestions for future work
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basic vision of future research work is given based on the research presented and 

discussed in this thesis. 

 

9.3.1 Design models for diversified PV technologies 

Current on-grid PV system design models are not considering emerging PV 

technologies and energy storage, as these have not yet made it into the micro-generation 

market.  In addition, the performance of these emerging PV technologies within a PV 

system is still unknown even though it is thought that organic-based PV module may 

absorb from a wider angle, lower radiation, and performance is not badly affected by 

high temperatures.  This instigates that such technology may perform better than mature 

PV technologies. 

Hence the motivations for future research underlying concepts of modelling are: 

• the evaluation of field tests using emerging PV technologies.  This will identify 

system level performances related to emerging PV technologies radiation 

absorption, which helps to create accurate technology specific mathematical 

PV models. 

• the evaluation of other energy storage options such as hydrogen storage and 

fuel cells.  The use of hydrogen energy storage systems and fuel cells is 

another form of energy storage that should be studied as an option to include in 

the small power system, which may lead to lower costs and environmental 

impacts than batteries.  In any case, energy management in a domestic 

environment is required in the future. 

• the design of web-based user friendly decision support tool for PV technology 

for micro-generation, based on the individual ranking of criteria.  This will 

result in a customer informed design approach. 

 

9.3.2 Policy adaptation for the inclusion of emerging PV technologies 

Current policies for the implementation of financial RE support schemes are usually 

based on the market electricity price of the respective RE source.  However, even 

though current policies may encourage high CO2 mitigation, they may not necessarily 

encourage economic competitiveness between technologies.  Hence the motivation of 

this future research, which can be built on the conceptual multi-objective framework 

presented in this research work, may reach compromise solutions between domestic 

users and public objectives, introducing emerging technologies within the PV market.  
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Besides, the present and future financial RE support schemes to PV applications must 

be considered as an investment with strong public support and long-term human 

benefits policy. 

 

9.3.3 Emerging PV technologies large-scale manufacturing investigations 

There is only a handful of large-scale manufacturing of emerging PV technologies 

mainly DSSC and OPV.  Cost assessments and life cycle analyses were based on lab-

process or small-scale productions.  This research has focused on the potential cost 

assessment and life cycle analysis on hybrid organic-based PV modules, which were 

extrapolated from lab-scale solar cell designs.  Studies on the potential fabrication 

process for mass production of hybrid organic-based QD solar cells are yet unknown to 

the industry.  Hence there is a need for pilot projects related to large-scale 

manufacturing of a number of emerging PV technologies, including hybrid organic-

based PVs, that may encourage higher efficiencies and stability from current OPV 

technology.  These pilot projects will reveal the cost reduction potential, and low 

environmental impact to integrate successfully within the PV market for micro-

generation. 

 



 



 

 

 

 

Climate Data 

The isotropic solar radiation model in (A.1), translate horizontal radiation data of typical 

meteorological years, obtained from SoDa [229], to any orientation.  The total solar 

radiation on a surface at an angle is given by summing the beam, diffused and albedo 

radiation referred to the inclined angle (β). 

 

  
( )

{ }( )sin(360 ( 100))

( ) ( ) ( ) ( )

( ) cos
( ) 1 cos / 2
( ) (1 cos ) / 2

cos(90 )
(sin )

0.095 0.04

T

B

DH

g

H DH BH

BH B

H B

d
365

I B D R
where
B I
D I
R I

I I I
I I
I I C

C

β β β β

β θ
β β

β ρ β

γ
γ

× −

⎫= + + ⎪
⎪
⎪

= ⎪
⎪= + ⎪⎪= − ⎬
⎪= + ⎪
⎪= −
⎪

= + ⎪
⎪

= + ⎪⎭

 (A.1) 

where: 

C, the sky diffuse factor, is an approximation based on the fraction of the sky to which 

the measuring device is assumed to point [230]. 

IH, is the global radiation on the horizontal as per data 

IB, is the direct beam radiation normal to rays 

γ, is the altitude angle 

IBH, is the beam radiation on the horizon 

IDH, is the diffused radiation on the horizon 

β, is the tilt angle, the optimal slope is the latitude of the location [231]. 

ρg, is the surface reflectance 
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θ, is the ray incident angle assumed at 0.2 (concrete – grass index) 

 

Three locations were chosen for the studies with contrasting solar energy availability.  

The UK-base case is in Manchester, the German-base case is in Stuttgart and the Malta-

base is representing the southern region of EU, and the Mediterranean region.  The 

annual cumulated hourly radiation and hourly maximal irradiation on a flat surface are 

shown in Figure A.1. 

 

Domestic Environment Load within a Household 

At different locations, the domestic environment load profile may have different load 

profiles due to different electricity needs and tariff structures.  However, the available 

UK based load profiles obtained from UKERC [173] are used.  The load profiles were 

filtered; sorted and averaged in hourly time steps under 4 different household categories 

as in Table A.1.  To illustrate each load profile category, the annual summation for 

hourly load and the hourly maximal loads, and their load duration curves are shown in 

Figure A.2 and Figure A.3. 
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Figure A.1: Solar irradiance data plot. 
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Table A.1: Load data categories 

Cum* Max*

2 Bed G & E 2 bedroom household having gas and electrcity energy sources BLUE 88.39 99.17

3 Bed G & E 3 bedroom household having gas and electrcity energy sources GREEN 92.79 97.02

4 Bed G & E 4 bedroom household having gas and electrcity energy sources RED -- --

3 Bed E only 3 bedroom household having electrcity energy sources only (x10) BLACK -26.47 -43.58

* Cum stands for Annual Cumulative Hourly Load and Max stands for Hourly Maximal Load according to figure 
XX

 Correlation (%) 
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The Annual Cumulative Hourly Load in kW (represented with Bar Graph) and the Hourly Maximal Load 
in kW (represented with Line Graph).  Colours are indicated in Table A.1 above. 

Figure A.2: Load data plot 

 

Figure A.3 shows that, domestic loads tend to have very low demand levels (less than 

500W) for the most of the year.  In the case of 3 Bed E only, which makes use of a day-

night tariff, the main consumption would be storage heaters during the night.  Hence, 

the consumption during the day is very minimal.  Meanwhile, the loads having both 

electricity and gas energy sources are highly correlated and have similar profiles 

independent of the number of bedrooms. 
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Figure A.3: The load duration curves of the load categories in Table A.1. 

 

Electricity Tariffs 

The Market Index (MI) Price, reflecting the price of wholesale electricity in Great 

Britain in the short-term market; is referred to the dynamic grid tariff rate.  The MI-

Price is divided in 30 minute segments.  Hence the data was averaged, for every two 

segments, to represent an hourly price [232].  Figure A.4 shows the daily means and 

standard deviations of yearly export tariffs based on the available data in 2005, 2006, 

2007, 2008 and 2009.  Year 2008 had the most deviations in electricity prices with high 

and low prices during a whole day, recording higher prices than other years even during 

the day.  In fact, the electricity prices may be said to follow a pattern and their yearly 

average day profile are highly correlated as indicated.  The PV generation, which occurs 

during the day, is also positive correlated with higher electricity tariffs during the day 

than night tariffs. 
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Figure A.4:  Market Index Price hourly means and standard deviation of a day 



 



 

 

 

It is a well known fact that PV systems performance differ when it comes to the solar 

cell technology due to the combined climatic conditions such as effects of temperature, 

cloud cover and elevation of the sun.  So far, there is still no coherent methodology on 

how monitored data is presented and interpreted.  In fact, there has been an increase in 

the number of studies on PV system performance under changing climatic conditions.  

However, these studies are either technology specific or site specific, making it difficult 

to compare technologies or climatic conditions [233-236]. 

 

PV systems performance definition 

The International Energy Agency (IEA) Photovoltaic Power has established 

performance indices that describe energy performance under the IEC standard 61724 

[237].  Three of the system performance parameters are: 

Final Yield (Yf) - defines the energy production is a measure of the total annual 

electricity output (kWh) per kWp rated power installed calculated as in (B.1). 

  
max

OUT
f

EY
P

=  (B.1) 

where: 

EOUT is the energy output of the system 

Pmax is the nominal power rating of the PV module 

Reference yield (Yr) – defines solar irradiation resource of the PV array by the number 

of peak sun-hours if the reference irradiance (Href) is STC at 1000W/m2. 

  r
ref

HY
H

=  (B.2) 

where: H is the total plane of array irradiance in kWh/m2. 
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Performance Ratio (PR) - defines the system losses such as shadowing, inverter 

inefficiencies and soiling effect.  PR is the main index for characterising the system 

performance under certain conditions.  PR is calculated in (B.3) 

  f

r

Y
PR

Y
=  (B.3) 

Hence the PR is directly proportional to the system yield which is a fundamental 

parameter for PV generation, as it is pivotal for cash flow calculations and related 

energy output indices.  Hence it is ideal to use annual yield figures differentiated 

according to module technologies installed within any PV analysis.  However, these 

figures are based on field monitored performance data, and due to the time required for 

data gathering and lack of PV alternatives in the old days, there are only few studies.  In 

fact, the only UK based study, providing directly comparable data on PV module 

technologies performance under UK and Mediterranean climate conditions, is the PV-

Compare project.  Eleven different systems comprising different PV technology from 

commercial available products were tested under two climate conditions.  This project 

offers an informative tool for retailers, systems designers, architects, energy advisors 

and product developers.  The expected annual energy yield for each technology was 

determined as shown in Table B.1.  Though the results from the project may differ from 

current performances due to technology progress, the outdoor performance of PV 

systems under different technology and climatic conditions is yet to be understood.  

However, for the purpose of this thesis, the PV-Compare project results were 

aggregated to differentiate between different PV technologies as in Table B.1.  So far, 

comparable performance studies on PV systems using emerging PV technology has still 

not been developed, since these technologies are mainly lab-based ones.  However, 

companies may state that their organic PV panel may absorb from a wider angle, 

instigating that such technology performs better than commercial available PV.  Hence 

for this reason, the PR of emerging PV technologies is taken as the highest recorded that 

is similar to the CIS technology type results in PV-Compare analysis.  However in some 

cases within this thesis a commonly used PR is taken as 0.85 for comparison purposes. 
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Table B.1: PV performance results in PV-Compare project 

kWh/kWp PR kWh/kWp PR
Amorphous (3-j) Unisolar US64 1380.40 0.81 858.6 0.84

Amorphous (2-j) ASE 30 DG-UT 1655.30 0.97 991.8 0.97
Amorphous (2-j) Solarex Millennia 1515.50 0.89 926.6 0.91
Amorphous (1-j) Intersolar Phoenix 887.40 0.52 557.3 0.55
Monocrystalline BP 585 1389.20 0.82 871.8 0.85

Multicrystalline Evergreen 1283.30 0.75 824.8 0.81
Multicrystalline Astropower 1352.90 0.80 821.8 0.80
Multicrystalline Solarex MSX 1368.00 0.80 842 0.82
Multicrystalline ASE 300DGUT 1340.40 0.79 875.1 0.86

CIS Siemens ST40 1553.30 0.91 1025.3 1.00
CdTe BP Apollo 958.50 0.56 673.7 0.66

Amorphous 0.93 0.94
Monocrystalline 0.82 0.85
Multicrystalline 0.79 0.82
CIS 0.91 1.00

CdTe 0.56 0.66

Annual Radiation 
1022kWh/m2

Assumed PR

ProductProduct Technology

Mediterranean          
(Mallorca - Spain)

Annual Radiation 
1700kWh/m2

UK                    (Begbroke 
- Oxford)

 
 

 

 



 



 

 

 

 

 

The core of a PV system is the solar cell that performs energy conversion from light to 

electricity.  An overview is portrayed on the drivers of a solar cell to function.  Firstly 

the semiconductor properties and basic material structure principles will help 

understand the basis of the usage of semiconductors as solar cells.  Then electricity 

production, associated losses and constraints from solar cells is explained. 

 

Introduction 

Isolated atom electrons have defined energy levels.  Atom electrons in solids have 

discrete energy levels grouped into energy bands.  Hence, atoms in a solid crystal tend 

to bond with each other.  There are three types of bonding: Ionic (Insulators), Metallic 

(Metals) and Covalent Bonds. 

The Covalent Bond, shown in Figure C.1, is the evidence for semiconductors.  Covalent 

bond is a special bond where the atom shares its free electrons with other neighbouring 

atoms to close the shell.  When the shell is closed there are no free electrons hence, 

behaving similar to insulators in the ionic bonding.  However, an element of conduction 

can be induced in the lattice by doping, which is further explained below. 

 

 
Figure C.1: Covalent bond for pure silicon crystal (intrinsic) 
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The energy band diagram for a semiconductor lies between an insulator and a metal.  At 

0oK semiconductors are mainly insulators.  The difference is the size of the energy gap 

between the valence band, which is full of electrons, to the conduction band.  Hence 

electron excitation occurs from the valence band to the conduction band by hitting the 

electron with a form of energy, light in the case of PV.  Hence an important parameter 

in semiconductors is the energy gap or bandgap where it specifies the energy required, 

for an electron, to depart and go to the conduction band.  Different semiconductors have 

bandgap parameters and can range from wide band gaps like the Gallium Nitride 

(3.4eV) to narrow bandgap Indium Antimonide (<0.5eV). 

Figure C.2 represents a static band structure for a semiconductor.  There is an energy-

momentum relationship E-k that reflects the dynamics of electrons.  Figure C.3 

illustrated E-k diagrams for two types of semiconductors namely direct and indirect.  

The electrons on top have the highest energy than electrons below.  The direct type 

semiconductor has the minimum of the conduction band, and maximum of the valence 

band, occurring at the same value of momentum.  For indirect type, there is a different 

value of momentum.  Therefore in the latter as the electron gaps the band it also has to 

change its momentum. 

Light absorption is a crucial property in semiconductor devices to have a good 

photovoltaic effect.  However, this also depends on the quantum nature of light.  Light 

wavelengths contain packets of discrete energy called photons.  In theory, every photon 

having energy above the bandgap energy may excite an electron form the valence band  

 

 
Figure C.2: static band structure of a semiconductor 

 



APPENDIX C: The Basics of PV Devices  207 
   

 
Figure C.3: The E-k diagrams for Si (a) indirect and GaAs and InP (b) direct [238] 

 

to the conduction band.  Hence, every semiconductor has a range of wavelengths within 

the solar spectrum that can be absorbed.  This is called the spectral response of a 

semiconductor also referred to as the quantum efficiency.  It is a measure of the 

photocurrents collected at each wavelength relative to the number of photons incident 

on the surface at that wavelength. 

The absorption coefficient quantifies the capability of the semiconductor to absorb light 

energy.  This energy travels inside the semiconductor and decays exponentially.  Many 

semiconductors are good light absorbers, and all energies falling above the bandgap are 

absorbed within few micrometers thickness.  These are mainly the direct type of 

semiconductors.  In fact, higher material thickness is essential for indirect bandgap 

semiconductor for light absorption. 

The imperfections in the lattice structure give rise to recombination centres within the 

structure.  Recombination occurs when free electrons and holes extinct before they are 

collected by the external circuit.  This recombination takes place either through within 

recombination centres or by bulk recombination.  The result is a reduction in carriers’ 

lifetime that is the mean time between production and extinction of a charge carrier. 

Diffusion length is the average distance travelled by a charge carrier before 

recombination, a measurement for carriers’ lifetime.  Hence only carriers within this 

diffusion length from the junction are collected, the others recombine and therefore 

reduce efficiency of photocurrents production.  In addition, part of the incident photon 

is lost also in the electron-hole pair generation.  The energy in excess of the bandgap is 
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dissipated as heat both within the valence and conduction band.  This is one of the loss 

mechanisms in solar cells. 

The charge particles in semiconductors are electrons, negative charge carriers, and 

holes, positive charge carriers.  Excited electrons, due to light, heat or electric current, 

cross the small band gap between the valence band to the conduction band.  A perfect 

semiconductor crystal with no impurities has no free charge carriers at 0oK, intrinsic 

semiconductor.  Impurities are added to the crystal by doping process from group 5 

element, to have n-type semiconductor, excess of electrons called donors, while from 

group 3 element, to have p-type semiconductor, excess of holes called acceptors.  

Having an n-type and p-type semiconductor material will tend to create an electric field, 

developing a dipole called the p-n junction. 

 

The p-n Junction 

Figure C.4 illustrates a simple p-n junction, a classical model of a solar cell.   Other 

types of junction exist.  These junctions are p-i-n junction, to enhance photogeneration 

in short diffusion length materials, and p-n heterojunction, to improve carrier collection 

with different band gap materials.  For an n-type semiconductor, the donor level will be 

very close to the conduction band.  On the other hand, for a p-type semiconductor, the 

acceptor level will be very close to the valence band.  Electrons from the donor level 

excite with little energy and jump to the conduction band.  On the other hand, electrons 

from the valence band of the p-type semiconductor jump to the acceptor level leaving 

holes in the valence band.  The force exerted by these charge carriers creates an electric 

field between the n-type and p-type semiconductors.  Hence, a depletion region is 

established which gives rise to an internal potential difference.  As light hits the 

semiconductor surface, both semiconductors will generate an electron hole pair.  The 

minority carriers in semiconductor, holes in n-type and electrons in p-type, are diffused 

in the p-n junction and are swept away by the electric field resulting in a light-generated 

current.  Hence the p-n junction separates opposite charge carriers and hence transforms 

the light-generated current into electric current.  The front and rear of a solar cell 

contacts extract this electric current being generated.  On top, the top front contact needs 

to allow light to pass. 
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The physical layout (not to scale): (b) the difference of dopant concentrations ND -- N A; (c) the band 

diagram; (d) charge density; (e) electric field; (f) electrostatic potential. The quantities shown by the 

dashed line correspond to an idealised abrupt junction with constant dopant concentrations in the base 

and in the emitter; the full line corresponds to a typical industrial solar cell with a diffused emitter. 

Figure C.4: The p-n junction cell in equilibrium [238] 
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Non-ideal components are shown by the dotted line 

Figure C.5: Equivalent circuit of an ideal solar cell (full lines) [238] 

 

Electrical Principles 

The solar cell can be represented in Figure C.5 as an equivalent circuit, consisting of the 

current source (Iph) with an ideal diode.  A practical solar cell equivalent circuit consist 

also of a series and shunt resistor described later. 

 

Considering the ideal solar cell equivalent circuit in Figure C.5, the net current can then 

be given by (C.1). 

 

  1 1
qV
kT

ph oI I I e⎡ ⎤= − −⎢ ⎥⎣ ⎦
 (C.1) 

where: 

Iph  is the light-generated current 

V is the voltage potential 

I01 is the reverse saturation current (dark) 

q is the electronic charge i.e. 1.6x10-19C 

k is Boltzmann’s Constant i.e. 1.38x10-23J/K 

 

The I-V characteristic of a solar cell is compared to a diode, refer to Figure C.6. Two 

important parameters are the short-circuit current (ISC), determined by the light spectrum 

and solar cell spectrum response mentioned earlier, and open-circuit voltage (VOC) 

related to the band gap.  The open-circuit voltage is derived in (C.2): 

  ln 1SC
OC

o

IkTV n
q I

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 (C.2) 

where n is the junction “idealistic” factor which is a measure of the quality of the 

material. 

(for n=1 VOC  is maximum). 
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Figure C.6: I-V characteristic of a PV device [238] 

 

The maximum power point is where the product I-V characteristics exhibit the 

maximum rectangular area under the I-V characteristics described the Fill Factor FF 

denoted by (C.3). 

 

  max OC SCP FF V I= ⋅  (C.3) 

 

The Power Conversion Efficiency in (C.4) or solar cell efficiency (PCE or η) is a 

fundamental parameter for PV performance.  It is the ratio of maximum power output 

under standard test condition and the incident power radiation.  The standard test 

conditions are irradiance at 100mW/cm2 at spectrum air mass (AM) 1.5 and temperature 

25oC. 

 

  max

e

PPCE
ϕ

=  (C.4) 

 

Efficiency Losses 

Recombination losses are due to defects in the crystal structure, impurities or at energy 

levels inside the gap where electrons fall back to the valence band and recombine, 

surface recombination.  Part of the recombination is activated by metal contacts that 

exhibit ohmic value.  For high-efficient solar cells, this recombination is lessened by 

protected layers and heavily doped regions. 
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Current losses affect the collection efficiency.  These losses are a measure of the 

capability that the number of carriers generated by light reaches the junction.  In some 

solar cells, amorphous and polycrystalline, carrier transport is not simply made by 

diffusion.  So electric fields are essential to pull the carriers.  Other current losses are 

due to light reflection, shading and pure absorption properties.  Hence solar cell 

developments led to reflection layers, surface texturing and light trapping designs. 

The practical equivalent circuit of the solar cell contains series and shunt resistor as 

shown in Figure C.5 with dotted lines.  The series resistor clearly effects the operation 

of the solar cell as it reduces the fill factor and PCE.  It is a representation of the 

imperfections of the solar cell and other factors such as doping densities and lifetime of 

carriers.  Hence a very low series resistance will result in a more square-like I-V 

characteristic.  Though the shunt resistor is less problematic, a very high shunt resistor 

is desired as this has effects in decreasing the Voc. 

Two operational consequences on solar cells performance are the ambient temperature 

and the irradiance.  The temperature has a significant impact on the solar cell output 

voltage.  As the temperature of the solar cell increases, voltage decreases.  Normally a 

parameter of mV/oC is specified.  Another effect on the I-V characteristics is the 

irradiance.  As the irradiance increases, the short circuit current increases, generating a 

higher output current.  The voltage variation is insignificant as it depends logarithmic on 

the irradiance. 
 

 

 

 

 

Figure C.7: Series (a) & parallel (b) resistance effects on the I-V characteristic [238] 
 

 

 



 

 

 

 

 

Sizing of an on-grid system involve electrical customers adding up the total electrical 

consumption for one year, which is available on utility bills.  Then for an average daily 

consumption the annual electrical consumption is divided by 365 days per year.  

Finally, this daily electrical consumption (kWh) is divided by the average solar resource 

in the available area (irradiance). 

For example, in the UK, the average irradiance factor is 2.5 hours per day.  This is the 

amount of 1000W received by the solar array, not accounting for design inefficiencies.  

A UK home electricity annual average consumption is 3,300kWh per year. 

Hence a simple calculation follows in (D.1): 

 

  

3,300 365 9.04 /
9.04 / 2.5 3.62 3620
3600 0.9( ) 4018 4000
4000  PV system cost £18,000

inverter

kWh days kWh day
kWh day kW Wp
Wp Wp Wp
Wp

η

÷ = ⎫
⎪÷ = = ⎪
⎬÷ = ≈ ⎪
⎪≈ ⎭

 (D.1) 

 

The system calculation above will approximately match the local load.  This is not 

necessary the best option.  The UK has introduced FITs for PV at a maximum rate of 

41.3p/kWhPV and 3p/kWhexport.  In addition, UK households can save from electricity 

bills at around 13p/kWhimports when solar resource correlates with the grid.  Hence the 

calculation above is for illustrative purposes only, based on average irradiance data and 

100% correlation between load and solar resource.  Costs and rebates may also vary.  

There are interactive web-based or software program based calculators for on-grid 

applications.  These calculators have system costs and applicable financial incentives. 

APPENDIX D 

Example: Sizing of Grid-

Connected PV System 
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