564 research outputs found

    Convergence of Ginzburg-Landau functionals in 3-d superconductivity

    Full text link
    In this paper we consider the asymptotic behavior of the Ginzburg- Landau model for superconductivity in 3-d, in various energy regimes. We rigorously derive, through an analysis via {\Gamma}-convergence, a reduced model for the vortex density, and we deduce a curvature equation for the vortex lines. In a companion paper, we describe further applications to superconductivity and superfluidity, such as general expressions for the first critical magnetic field H_{c1}, and the critical angular velocity of rotating Bose-Einstein condensates.Comment: 45 page

    On mathematical models for Bose-Einstein condensates in optical lattices (expanded version)

    Full text link
    Our aim is to analyze the various energy functionals appearing in the physics literature and describing the behavior of a Bose-Einstein condensate in an optical lattice. We want to justify the use of some reduced models. For that purpose, we will use the semi-classical analysis developed for linear problems related to the Schr\"odinger operator with periodic potential or multiple wells potentials. We justify, in some asymptotic regimes, the reduction to low dimensional problems and analyze the reduced problems

    Local regularity for fractional heat equations

    Full text link
    We prove the maximal local regularity of weak solutions to the parabolic problem associated with the fractional Laplacian with homogeneous Dirichlet boundary conditions on an arbitrary bounded open set ΩRN\Omega\subset\mathbb{R}^N. Proofs combine classical abstract regularity results for parabolic equations with some new local regularity results for the associated elliptic problems.Comment: arXiv admin note: substantial text overlap with arXiv:1704.0756

    Global attractors for Cahn-Hilliard equations with non constant mobility

    Full text link
    We address, in a three-dimensional spatial setting, both the viscous and the standard Cahn-Hilliard equation with a nonconstant mobility coefficient. As it was shown in J.W. Barrett and J.W. Blowey, Math. Comp., 68 (1999), 487-517, one cannot expect uniqueness of the solution to the related initial and boundary value problems. Nevertheless, referring to J. Ball's theory of generalized semiflows, we are able to prove existence of compact quasi-invariant global attractors for the associated dynamical processes settled in the natural "finite energy" space. A key point in the proof is a careful use of the energy equality, combined with the derivation of a "local compactness" estimate for systems with supercritical nonlinearities, which may have an independent interest. Under growth restrictions on the configuration potential, we also show existence of a compact global attractor for the semiflow generated by the (weaker) solutions to the nonviscous equation characterized by a "finite entropy" condition

    Ginzburg-Landau model with small pinning domains

    Full text link
    We consider a Ginzburg-Landau type energy with a piecewise constant pinning term aa in the potential (a2u2)2(a^2 - |u|^2)^2. The function aa is different from 1 only on finitely many disjoint domains, called the {\it pinning domains}. These pinning domains model small impurities in a homogeneous superconductor and shrink to single points in the limit ˇ0\v\to0; here, \v is the inverse of the Ginzburg-Landau parameter. We study the energy minimization in a smooth simply connected domain ΩC\Omega \subset \mathbb{C} with Dirichlet boundary condition gg on \d \O, with topological degree {\rm deg}_{\d \O} (g) = d >0. Our main result is that, for small \v, minimizers have dd distinct zeros (vortices) which are inside the pinning domains and they have a degree equal to 1. The question of finding the locations of the pinning domains with vortices is reduced to a discrete minimization problem for a finite-dimensional functional of renormalized energy. We also find the position of the vortices inside the pinning domains and show that, asymptotically, this position is determined by {\it local renormalized energy} which does not depend on the external boundary conditions.Comment: 39 page

    A general wavelet-based profile decomposition in the critical embedding of function spaces

    Get PDF
    We characterize the lack of compactness in the critical embedding of functions spaces XYX\subset Y having similar scaling properties in the following terms : a sequence (un)n0(u_n)_{n\geq 0} bounded in XX has a subsequence that can be expressed as a finite sum of translations and dilations of functions (ϕl)l>0(\phi_l)_{l>0} such that the remainder converges to zero in YY as the number of functions in the sum and nn tend to ++\infty. Such a decomposition was established by G\'erard for the embedding of the homogeneous Sobolev space X=H˙sX=\dot H^s into the Y=LpY=L^p in dd dimensions with 0<s=d/2d/p0<s=d/2-d/p, and then generalized by Jaffard to the case where XX is a Riesz potential space, using wavelet expansions. In this paper, we revisit the wavelet-based profile decomposition, in order to treat a larger range of examples of critical embedding in a hopefully simplified way. In particular we identify two generic properties on the spaces XX and YY that are of key use in building the profile decomposition. These properties may then easily be checked for typical choices of XX and YY satisfying critical embedding properties. These includes Sobolev, Besov, Triebel-Lizorkin, Lorentz, H\"older and BMO spaces.Comment: 24 page

    Vortex density models for superconductivity and superfluidity

    Full text link
    We study some functionals that describe the density of vortex lines in superconductors subject to an applied magnetic field, and in Bose-Einstein condensates subject to rotational forcing, in quite general domains in 3 dimensions. These functionals are derived from more basic models via Gamma-convergence, here and in a companion paper. In our main results, we use these functionals to obtain descriptions of the critical applied magnetic field (for superconductors) and forcing (for Bose-Einstein), above which ground states exhibit nontrivial vorticity, as well as a characterization of the vortex density in terms of a non local vector-valued generalization of the classical obstacle problem.Comment: 34 page

    Concentration analysis and cocompactness

    Full text link
    Loss of compactness that occurs in may significant PDE settings can be expressed in a well-structured form of profile decomposition for sequences. Profile decompositions are formulated in relation to a triplet (X,Y,D)(X,Y,D), where XX and YY are Banach spaces, XYX\hookrightarrow Y, and DD is, typically, a set of surjective isometries on both XX and YY. A profile decomposition is a representation of a bounded sequence in XX as a sum of elementary concentrations of the form gkwg_kw, gkDg_k\in D, wXw\in X, and a remainder that vanishes in YY. A necessary requirement for YY is, therefore, that any sequence in XX that develops no DD-concentrations has a subsequence convergent in the norm of YY. An imbedding XYX\hookrightarrow Y with this property is called DD-cocompact, a property weaker than, but related to, compactness. We survey known cocompact imbeddings and their role in profile decompositions

    Asymptotic behaviour of a semilinear elliptic system with a large exponent

    Full text link
    Consider the problem \begin{eqnarray*} -\Delta u &=& v^{\frac 2{N-2}},\quad v>0\quad {in}\quad \Omega, -\Delta v &=& u^{p},\:\:\:\quad u>0\quad {in}\quad \Omega, u&=&v\:\:=\:\:0 \quad {on}\quad \partial \Omega, \end{eqnarray*} where Ω\Omega is a bounded convex domain in RN,\R^N, N>2,N>2, with smooth boundary Ω.\partial \Omega. We study the asymptotic behaviour of the least energy solutions of this system as p.p\to \infty. We show that the solution remain bounded for pp large and have one or two peaks away form the boundary. When one peak occurs we characterize its location.Comment: 16 pages, submmited for publicatio

    H^s versus C^0-weighted minimizers

    Full text link
    We study a class of semi-linear problems involving the fractional Laplacian under subcritical or critical growth assumptions. We prove that, for the corresponding functional, local minimizers with respect to a C^0-topology weighted with a suitable power of the distance from the boundary are actually local minimizers in the natural H^s-topology.Comment: 15 page
    corecore