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We characterize the lack of compactness in the critical embedding of functions spaces
X ⊂ Y having similar scaling properties in the following terms: a sequence (un)n≥0

bounded in X has a subsequence that can be expressed as a finite sum of translations
and dilations of functions (φl)l>0 such that the remainder converges to zero in Y as the
number of functions in the sum and n tend to +∞. Such a decomposition was established
by Gérard in [13] for the embedding of the homogeneous Sobolev space X = Ḣs into
the Y = Lp in d dimensions with 0 < s = d/2 − d/p, and then generalized by Jaffard
in [15] to the case where X is a Riesz potential space, using wavelet expansions. In
this paper, we revisit the wavelet-based profile decomposition, in order to treat a larger
range of examples of critical embedding in a hopefully simplified way. In particular, we
identify two generic properties on the spaces X and Y that are of key use in building the
profile decomposition. These properties may then easily be checked for typical choices
of X and Y satisfying critical embedding properties. These includes Sobolev, Besov,
Triebel-Lizorkin, Lorentz, Hölder and BMO spaces.
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1. Introduction

The critical embedding of homogeneous Sobolev spaces in dimension d states that

for 0 ≤ t < s and 1 ≤ p < q <∞ such that d/p− d/q = s− t, one has

Ẇ s,p(Rd) ⊂ Ẇ t,q(Rd). (1.1)

The lack of compactness in this embedding can be described in terms of an asymp-

totic decomposition following Gérard [13] who considered the case p = 2 and t = 0,

and Jaffard [15] who considered general values p > 1 with the Riesz potential spaces

Ḣs,p in replacement of Sobolev spaces Ẇ s,p, again with t = 0. Their results can be

formulated in the following terms: a sequence (un)n≥0 bounded in Ḣs,p(Rd) can be

decomposed up to a subsequence extraction according to

un =

L∑

l=1

h
s−d/p
l,n φl

( · − xl,n
hl,n

)
+ rn,L, (1.2)

where (φl)l>0 is a family of functions in Ḣs,p(Rd) and where

lim
L→+∞

(
lim sup
n→+∞

‖rn,L‖Lq

)
= 0.

This decomposition is “asymptotically orthogonal” in the sense that for k �= l

| log(hl,n/hk,n)| → +∞ or |xl,n − xk,n|/hl,n → +∞, as n→ +∞.

This type of decomposition was also obtained earlier in [5] for a bounded sequence

in H1
0 (D,R3) of solutions of an elliptic problem, with D the open unit disk of R2

and in [27] and [26] for the critical injections of W 1,2(Ω) in Lebesgue space and

of W 1,p(Ω) in Lorentz spaces respectively, with Ω a bounded domain of Rd. They

were also studied in [25] in an abstract Hilbert space framework and in [4] in the

Heisenberg group context.

The above-mentioned references treat different types of examples of critical

embedding by different methods. One of the motivations of this paper is to iden-

tify some fundamental mechanisms that lead to such results for a general critical

embedding

X ⊂ Y,

in a unified way. Here X and Y are generic homogeneous function spaces which,

similar to the above particular cases, have the same scaling properties in the sense

that for any function f and h > 0

hr‖f(h·)‖X = ‖f‖X and hr‖f(h·)‖Y = ‖f‖Y , (1.3)

for the same value of r. In a similar way to Jaffard, we use wavelet bases in order

to construct the functions φl, yet in a somehow different and hopefully simpler

way. Our construction is based on two basic key properties of wavelet expansions
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in the spaces X and Y , which may then be easily checked on particular pairs of

spaces of interest. In particular, any critical embedding involving Sobolev, Besov,

Triebel-Lizorkin, Lorentz, Hölder or BMO spaces is covered by our approach.

The study of the lack of compactness in the critical embedding of Sobolev spaces

supplies us with a large amount of information about solutions of nonlinear partial

differential equations, both in the elliptic frame or the evolution frame. One has,

for example,

• the pioneering works of P.-L. Lions [21] and [22] for the sake of geometric prob-

lems,

• the description of bounded energy sequences of solutions to the defocusing semi-

linear quintic wave equation, up to remainder terms small in energy norm in

[2],

• the characterization of the defect of compactness for Strichartz estimates for the

Schrödinger equation in [18],

• the understanding of features of solutions of nonlinear wave equations with expo-

nential growth in [3],

• the sharp estimate of the time life-span of the focusing critical semilinear wave

equation by means of the size of energy of the Cauchy data in [17],

• the study of the bilinear Strichartz estimates for the wave equation in [28].

For further applications, we refer to [10, 12, 14, 23, 20] and the references therein.

Our results which cover a broad spectrum of spaces could be at the origin of

several prospectus of similar types of regularity results for Navier–Stokes systems

(as in [16, 11]), qualitative study of nonlinear evolution equations or estimates of

the span life of focusing semilinear dispersive evolution equations.

1.1. Wavelet expansions

Wavelet decompositions of a function have the form

f =
∑

λ∈∇
dλψλ, (1.4)

where λ = (j, k) concatenates the scale index j = j(λ) and space index k = k(λ):

for d = 1, we have with the L2 normalization,

ψj,k = ψλ = 2j/2ψ(2j · −k), j ∈ Z, k ∈ Z,

where ψ is the so-called “mother wavelet”. In higher dimension d > 1, one needs

several generating functions ψe for e ∈ E a finite set, so that setting ψλ := (ψe
λ)

T
e∈E

and dλ = (deλ)e∈E , we can again write (1.4) with dλψλ a finite-dimensional inner

product and

ψj,k = ψλ = 2dj/2ψ(2j · −k), j ∈ Z, k ∈ Zd.
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The index set ∇ in (1.4) is thus always defined as

∇ := Z× Zd.

Note that λ may also be identified to a dyadic cube

λ ∼ 2−j(k + [0, 1]d).

We shall sometimes use the notation

|λ| := j(λ),

for the scale level of λ. In all the sequel, we systematically normalize our wavelets

in X which is equivalent to normalizing them in Y in view of (1.3):

ψj,k = ψλ = 2rjψ(2j · −k). (1.5)

It is known that, in addition to be Schauder bases, wavelet bases are unconditional

bases for “most” classical function spaces, including in particular the family of

Besov and Triebel-Lizorkin spaces: for such spaces X there exists a constant D

such that for any finite subset E ⊂ ∇ and coefficients vectors (cλ)λ∈E and (dλ)λ∈E

such that |cλ| ≤ |dλ| for all λ, one has
∥∥∥∥∥
∑

λ∈E

cλψλ

∥∥∥∥∥
X

≤ D

∥∥∥∥∥
∑

λ∈E

dλψλ

∥∥∥∥∥
X

. (1.6)

We refer to [6, 7, 24] for more details on the construction of wavelet bases and on

the characterization of classical function spaces by expansions in such bases.

1.2. Main results

Our profile decomposition relies on two key assumptions concerning wavelet decom-

positions and the spaces X and Y .

In addition we always work under the general assumption that our wavelet basis

(ψλ)λ∈Λ is an unconditional basis for both spaces X and Y . We therefore assume

that (1.6) holds with some constant D for both norms.

Our first assumption involves the nonlinear projector that we define for each

M > 0 as follows: if f ∈ X has the expansion in the wavelet basis given by (1.4),

then

QMf :=
∑

λ∈EM

dλψλ, (1.7)

where EM = EM (f) is the subset of ∇ of cardinality M that corresponds to the

M largest values of |dλ|.
Such a set always exists due to the fact that (ψλ)λ∈Λ is a Schauder basis for X ,

since this implies that for any η > 0 only finitely many coefficients dλ are larger

than η in modulus. This set may however not be unique when some |dλ| are equal,
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in which case we may choose an arbitrary realization of such a set. Recall that we

have assumed the normalization (1.5) making ‖ψλ‖X or ‖ψλ‖Y independent of λ,

therefore EM also corresponds to the M largest ‖dλψλ‖X or ‖dλψλ‖Y .

Assumption 1.1. The nonlinear projection satisfies

lim
M→+∞

max
‖f‖X≤1

‖f −QMf‖Y = 0. (1.8)

The fact that the convergence of QMf towards f in Y holds uniformly on the unit

ball of X is tied to the nonlinear nature of the operator QM : if instead we took

QM to be the projection onto a fixed M -dimensional space, then (1.8) would be in

contradiction with the fact that the critical embedding of X into Y is not compact.

As will be recalled further, nonlinear approximation theory actually allows for a

more precise quantification of the above property in most cases of interest, through

an estimate of the form

max
‖f‖X≤1

‖f −QMf‖Y ≤ CM−s, M > 0

for some s > 0 and C only depending on the choice of X and Y . However, Assump-

tion 1.1 alone will be sufficient for our purpose.

Our second assumption only concerns the behavior of wavelet expansions with

respect to the X norm. It reflects the fact that this norm is stable with respect to

certain operations such as “shifting” the indices of wavelet coefficients, as well as

perturbating the value of these coefficients. This is expressed as follows.

Assumption 1.2. Consider a sequence of functions (fn)n>0 which are uniformly

bounded in X and may be written as

fn =
∑

λ∈∇
cλ,nψλ, (1.9)

and such that for all λ, the sequence cλ,n converges towards a finite limit cλ as

n→ +∞. Then, the series
∑

λ∈∇ cλψλ converges in X with

∥∥∥∥∥
∑

λ∈∇
cλψλ

∥∥∥∥∥
X

≤ C lim inf
n→+∞

‖fn‖X , (1.10)

where C is a constant only depending on the space X and on the choice of the

wavelet basis.

As will be recalled further, for practical choices of X such as Besov or Triebel-

Lizorkin spaces, the X norm of a function is equivalent to the norm of its wavelet

coefficients in a certain sequence space. This allows us to establish (1.10) essentially

by invoking Fatou’s lemma.
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We are now in a position to state the main theorem of this paper. For any

function φ, not necessarily a wavelet, and any scale-space index λ = (j, k) we use

the notation

φλ := 2rjφ(2j · −k), (1.11)

for the version of φ scaled and translated according to λ.

Theorem 1.1. Assume that X and Y are two function spaces with the same scal-

ing (1.3) and continuous embedding X ⊂ Y, and assume that there exists a wavelet

basis (ψλ)λ∈∇ which is unconditional for both X and Y, and such that Assump-

tions 1.1 and 1.2 hold. Let (un)n>0 be a bounded sequence in X. Then, up to sub-

sequence extraction, there exists a family of functions (φl)l>0 in X and sequences

of scale-space indices (λl(n))n>0 for each l > 0 such that

un =

L∑

l=1

φlλl(n)
+ rn,L, (1.12)

where

lim
L→+∞

(
lim sup
n→+∞

‖rn,L‖Y
)

= 0.

The decomposition (1.12) is asymptotically orthogonal in the sense that for any

k �= l,

|j(λk(n))− j(λl(n))| → +∞ or

|k(λk(n))− 2j(λk(n))−j(λl(n))k(λl(n))| → +∞, as n→ +∞.
(1.13)

Moreover, we have the following for the specific case where X is a Besov or

Triebel-Lizorkin space:

Theorem 1.2. The decomposition in Theorem 1.1 is stable in the sense that, for

some τ = τ(X) we have

‖(‖φl‖X)l>0‖�τ ≤ CK, (1.14)

where C is a constant that only depends on X and on the choice of the wavelet basis

and where K := supn≥0 ‖un‖X .

Remark 1.1. For certain sequences (un)n>0, it is possible that for any L > 0 the

decomposition (1.12) only involves a finite number of profiles φl for l = 1, . . . , L0,

which means that φl = 0 for l > L0. Inspection of our proof shows that the theorem
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remains valid in such a case, in the sense that

un =

L0∑

l=1

φlλl(n)
+ rn, (1.15)

where

lim
n→+∞

‖rn‖Y = 0.

In particular, the sequence (un)n>0 is compact in Y if and only if φl = 0 for all

l > 0.

Remark 1.2. Inspection of our proof also shows that in Assumption 1.1, we may

use for QM a more general nonlinear projector than the one obtained by taking the

M largest values of |dλ|. Generally speaking, we may consider a nonlinear projector

QM that has the general form (1.7), where the sets EM = EM (f) of cardinality M

depend on f and satisfy

EM (f) ⊂ EM+1(f).

Such a generalization appears to be useful when treating certain types of embedding,

see Sec. 3.

1.3. Layout

The effective construction of the decomposition is addressed in Sec. 2, together with

the proof of Theorem 1.1.

In Sec. 3, we discuss examples of X and Y with critical embedding for which

Assumptions 1.1 and 1.2 can be proved. This includes all previously treated cases,

and many others such as the embedding of Sobolev, Besov and Triebel-Lizorkin

spaces into Lebesgue, Lorentz, BMO and Hölder spaces, or into other Sobolev,

Besov and Triebel-Lizorkin spaces.

Finally, in Sec. 4, we prove the stability Theorem 1.2 for both setting of Besov

and Triebel-Lizorkin spaces.

2. Construction of the Decomposition and Proof of Theorem 1.1

In this section, we place ourselves under the assumptions of Theorem 1.1. Let

(un)n>0 be a bounded sequence in the space X and define

K := sup
n>0

‖un‖X < +∞.

The decomposition construction and the proof of Theorem 1.1 proceed in several

steps.
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Step 1. Rearrangements. We first introduce the wavelet decompositions

un =
∑

λ∈∇
dλ,nψλ. (2.1)

For each n > 0, we consider the non-increasing rearrangement (dm,n)m>0 of

(dλ,n)λ∈∇ according to their moduli. We may therefore write

un =
∑

m>0

dm,nψλ(m,n). (2.2)

Using the nonlinear projector QM defined by (1.7), we further split this expansion

into

un =

M∑

m=1

dm,nψλ(m,n) +RMun, (2.3)

with RMun = un − QMun. Combining Assumption 1.1 with the boundedness of

(un)n>0 in X , we infer that

lim
M→+∞

sup
n>0

‖RMun‖Y = 0. (2.4)

Our next observation is that if (ψλ)λ∈∇ is an unconditional basis of X , then the

coefficients dm,n are uniformly bounded: indeed, (1.6) implies that the rank one

projectors

Pµ : f =
∑

λ∈Λ

dλψλ 
→ Pµf := dµψµ,

satisfy the uniform bound

‖Pµ‖X→X ≤ D, µ ∈ ∇.

Since we have assumed that our wavelets are normalized inX , for example according

to ‖ψµ‖X = 1 for all µ ∈ ∇, we thus have

sup
λ,n

|dλ,n| = sup
m,n

|dm,n| ≤ DK .

Up to a diagonal subsequence extraction procedure in n, we may therefore assume

that for all m > 0, the sequence (dm,n)n>0 converges towards a finite limit that

depends on m,

dm = lim
n→+∞

dm,n.

Note that (|dm|)m>0 is a non-increasing sequence since all sequences (|dm,n|)m>0

are non-increasing. We may thus write

un =

M∑

m=1

dmψλ(m,n) + tn,M ,
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where

tn,M :=
M∑

m=1

(dm,n − dm)ψλ(m,n) +RMun.

Step 2. Construction of approximate profiles. We construct the profiles φl

as limit of sequences φl,i obtained by the following algorithm. At the first iteration

i = 1, we set

φ1,1 = d1ψ, λ1(n) := λ(1, n), ϕ1(n) := n. (2.5)

Assume that after iteration i − 1, we have constructed L − 1 functions

(φ1,i, . . . , φL−1,i) and scale-space index sequences (λ1(n), . . . , λL−1(n)) with L ≤ i,

as well as an increasing sequence of positive integers ϕi−1(n) such that

i−1∑

m=1

dmψλ(m,ϕi−1(n)) =

L−1∑

l=1

φl,iλl(ϕi−1(n))
.

At iteration i we shall use the ith component diψλ(i,ϕi−1(n)) to either modify one

of these functions or build a new one according to the following dichotomy.

(i) First case: assume that we can extract ϕi(n) from ϕi−1(n) such that for l =

1, . . . , L− 1 at least one of the following holds:

lim
n→+∞

|j(λl(ϕi(n))) − j(λ(i, ϕi(n)))| = +∞ (2.6)

or

lim
n→+∞

|k(λ(i, ϕi(n)))− 2j(λ(i,ϕi(n)))−j(λl(ϕi(n)))k(λl(ϕi(n)))| = +∞. (2.7)

In such a case, we create a new profile and scale-space index sequence by

defining

φL,i := diψ, λL(n) := λ(i, n)

and we set φl,i = φl,i−1 for l = 1, . . . , L− 1.

(ii) Second case: assume that for some subsequence ϕi(n) of ϕi−1(n) and

some l ∈ {1, . . . , L − 1} both (2.6) and (2.7) do not hold. Then it

is easily checked that j(λl(ϕi(n))) − j(λ(i, ϕi(n))) and k(λ(i, ϕi(n))) −
2j(λ(i,ϕi(n)))−j(λl(ϕi(n)))k(λl(ϕi(n))) only take a finite number of values as n

varies. Therefore, up to an additional subsequence extraction, we may assume

that there exist numbers a and b such that for all n > 0,

j(λ(i, ϕi(n))) − j(λl(ϕi(n))) = a (2.8)

and

k(λ(i, ϕi(n)))− 2j(λ(i,ϕi(n)))−j(λl(ϕi(n)))k(λl(ϕi(n))) = b. (2.9)



September 29, 2011 14:15 WSPC/S1793-7442 251-CM S1793744211000370

396 H. Bahouri, A. Cohen & G. Koch

We then update the function φl,i−1 according to

φl,i = φl,i−1 + di2
arψ(2a · −b) (2.10)

and φl
′,i = φl

′,i−1 for l′ ∈ {1, . . . , L− 1} and l′ �= l.

From this construction, and after extracting a diagonal subsequence which even-

tually coincides with a subsequence of ϕi(n) for each i, we see that for each value

of M there exists L = L(M) ≤M such that

M∑

m=1

dmψλ(m,n) =

L∑

l=1

φl,Mλl(n)
.

More precisely, for each l = 1, . . . , L, we have

φl,Mλl(n)
=

∑

m∈E(l,M)

dmψλ(m,n),

where the sets E(l,M) for i = 1, . . . , L constitute a disjoint partition of {1, . . . ,M}.
Note that E(l,M) ⊂ E(l,M +1) with #(E(l,M +1)) ≤ #(E(l,M))+1. Similarly,

the number of profiles L(M) grows at most by 1 as we move from M to M + 1.

As explained in Remark 1.2, it is possible that L(M) terminates at some maximal

value L0. Finally, note that for any m,m′ ∈ El,M , we have that

j(λ(m,n)) − j(λ(m′, n)) = a(m,m′) (2.11)

and

k(λ(m,n)) − 2j(λ(m,n))−j(λ(m′,n))k(λ(m′, n)) = b(m,m′), (2.12)

where a(m,m′) and b(m,m′) do not depend on n.

Step 3. Construction of the exact profiles.We now want to define the functions

φl as the limits in X of φl,M as M → +∞. For this purpose, we shall make use

of Assumption 1.2, combined with the scaling property (1.3) of the X norm and

the fact that (ψλ)λ∈∇ is an unconditional basis. For some fixed l and M such that

l ≤ L(M), let us define the functions

gl,M :=
∑

m∈E(l,M)

dmψλ(m),

f l,M,n :=
∑

m∈E(l,M)

dm,nψλ(m),

with λ(m) := λ(m, 1). From the scaling property (1.3) and the properties (2.11)

and (2.12), we find that

‖f l,M,n‖X =

∥∥∥∥∥∥
∑

m∈E(l,M)

dm,nψλ(m,n)

∥∥∥∥∥∥
X

.
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Since
∑

m∈E(l,M) dm,nψλ(m,n) is a part of the expansion of un, we thus find that

‖f l,M,n‖X ≤ DK ,

where D is the constant in (1.6) and K := supn>0 ‖un‖X . Invoking Assumption 1.2,

we therefore find that gl,M converges in X towards a limit gl as M → +∞. We

finally notice that, by construction, the gl,M are rescaled versions of the φl,M : there

exists A > 0 and B ∈ Rd such that

φl,M = 2Argl,M (2A · −B).

By (1.3), we therefore conclude that φl,M converges in X towards a limit φl :=

2Argl(2A · −B) as M → +∞.

Step 4. Conclusion of the proof. For any given L > 0, we may write

un =

L∑

l=1

φlλl(n)
+ rn,L,

where, for any value of M such that L ≤ L(M), the remainder rn,L may be decom-

posed into

L∑

l=1

(
φl,Mλl(n)

− φlλl(n)

)
+

L∑

l=1

∑

m∈E(l,M)

(dm,n − dm)ψλ(m,n)

+

L(M)∑

l=L+1

∑

m∈E(l,M)

dm,nψλ(m,n) +RMun. (2.13)

Note that each of these terms depends on the chosen value ofM but their sum rn,L
is actually independent of M . We rewrite this decomposition as

rn,L = r1(n,L,M) + r2(n,L,M),

where r1 and r2 stand for the first and last terms in (2.13), respectively. By con-

struction, all values of m which appear in the third term of (2.13) are between L+1

and M . Therefore the last two terms in (2.13) may be viewed as a partial sum of

RLun =
∑

m>L

dm,nψλ(m,n).

Since we have assumed that (ψλ)λ∈∇ is an unconditional basis for Y , we may

therefore write

‖r2(n,L,M)‖Y ≤ D‖RLun‖Y .
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According to Assumption 1.1, which is expressed by (2.4), the right-hand side con-

verges to 0 as L→ +∞ uniformly in n and therefore

lim
L→+∞

sup
n,M

‖r2(n,L,M)‖Y = 0.

We now consider the first two terms in (2.13). For the first term, we have
∥∥∥∥∥

L∑

l=1

(φl,Mλl(n)
− φlλl(n)

)

∥∥∥∥∥
X

≤
L∑

l=1

∥∥∥φl,Mλl(n)
− φlλl(n)

∥∥∥
X

=

L∑

l=1

∥∥φl,M − φl
∥∥
X
.

Therefore, for any fixed L, this term goes to 0 in X as M → +∞. For the second

term, we first notice that for any fixed L and M such that L ≤ L(M), all values of

m which appear in this term are less than or equal to M . Since we have assumed

that (ψλ)λ∈∇ is an unconditional basis for X , it follows that
∥∥∥∥∥∥

L∑

l=1

∑

m∈E(l,M)

(dm,n − dm)ψλ(m,n)

∥∥∥∥∥∥
X

≤ D

∥∥∥∥∥
M∑

m=1

(dm,n − dm)ψλ(m,n)

∥∥∥∥∥
X

≤ CD
M∑

m=1

|dm,n − dm|,

where C = ‖ψ‖X = ‖ψλ‖X for all λ ∈ ∇. Therefore for any fixed L andM such that

L ≤ L(M), this term goes to 0 in X as n → +∞. Combining these observations,

we find that for any fixed L and any ε > 0, there exist M and n0 such that for all

n ≥ n0,

‖r1(n,L,M)‖X ≤ ε.

By continuous embedding, the same holds for ‖r1(n,L,M)‖Y . Since M was arbi-

trary in the decomposition (2.13) of rn,L, we obtain that

lim
L→+∞

(
lim sup
n→+∞

‖rn,L‖Y
)

= 0,

which concludes the proof of the theorem.

3. Examples

Our main result applies to a large range of critical embedding. Specifically, we

consider

(i) For the space X : spaces of Besov type Ḃs
p,a or Triebel-Lizorkin type Ḟ s

p,a with

1 ≤ p <∞ and 1 ≤ a ≤ ∞.

(ii) For the space Y : spaces of Besov type Ḃt
q,b, Triebel-Lizorkin type Ḟ t

q,b, Lebesgue

type Lq, Lorentz type Lq,b, and the space BMO, with 1 ≤ q ≤ ∞ and

1 ≤ b ≤ ∞.
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Note that Lebesgue spaces may be thought of as a particular case of Triebel-Lizorkin

spaces since Lq = Ḟ 0
q,2, yet we treat them separately since several results that we

invoke further have been proved in an isolated manner for the specific case of

Lebesgue spaces.

The critical embedding for such spaces imposes that t < s together with the

scaling

r =
d

p
− s =

d

q
− t, (3.1)

where t = 0 if Y is of Lebesgue or Lorentz type, and t = 0 and q = ∞ if Y = BMO.

It also imposes some relations between the fine-tuning indices a and b. For example

for s > 0 and p, q such that d
p − s = d

q , the space Ḃs
p,a embeds continuously into

Lq,b if b ≥ a.

Note that for non-integer t > 0 the Hölder space Ċt coincides with the Besov

space Ḃt
∞,∞, and that for all integer m ≥ 0, the Sobolev space Ẇm,p coincides

with the Triebel-Lizorkin space Ḟm
p,2 when 1 < p <∞. In particular, Lp = Ḟ 0

p,2 for

1 < p < ∞. For p = 1, it is known that Ḟ 0
1,2 coincides with the Hardy space H1

which is a closed subspace of L1. We refer to [1] and [29] for an introduction to all

such spaces.

It is known that properly constructed wavelet bases are unconditional for all

such spaces, see in particular [24]. In addition, Besov and Triebel-Lizorkin spaces,

as well as BMO, may be characterized by simple properties on wavelet coefficients.

More precisely, for f =
∑

λ∈∇ dλψλ and wavelets normalized according to (1.5)

with r given by (3.1), we have the following norm equivalences (see [6, 7, 24]):

(i) For Besov spaces,

‖f‖Ḃt
q,b

∼



∑

j∈Z


∑

|λ|=j

|dλ|q



b/q



1/b

, (3.2)

with the standard modification when q = ∞ or b = ∞.

(ii) For Triebel-Lizorkin spaces,

‖f‖Ḟ t
q,b

∼

∥∥∥∥∥∥

(∑

λ∈∇
|dλχλ|b

)1/b
∥∥∥∥∥∥
Lq

, (3.3)

where χλ = 2dj/qχ(2j · −k) with χ = χ[0,1]d for λ ∼ (j, k). When b = ∞,

(
∑

λ∈∇ |dλχλ|b)1/b should be replaced by supj∈Z
∑

|λ|=j |dλχλ|.
(iii) For BMO,

‖f‖BMO ∼ max
λ∈∇


2d|λ|

∑

µ⊂λ

|dµ|22−d|µ|




1/2

, (3.4)
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where by definition µ ⊂ λ means that 2−j(µ)([0, 1]d + k(µ)) ⊂ 2−j(λ)([0, 1]d +

k(λ)).

Note that due to the discretization of the scale-space index dλ, the above equivalent

norms do not exactly satisfy the scaling relation (1.3). These norm equivalences

readily imply that (ψλ)λ∈Λ is an unconditional basis for such spaces. Note that

there exists no simple wavelet characterization of Lorentz spaces Lq,b when b �= q.

However, the unconditionality of (ψλ)λ∈Λ in such spaces follows by interpolation of

Lebesgue spaces for any 1 < b, q <∞.

We now need to discuss the validity of Assumptions 1.1 and 1.2, for such choices

of spaces. We first discuss Assumption 1.2 which is only concerned with the space

X . Since we assumed here that X is of Besov type Ḃs
p,a or Triebel-Lizorkin type

Ḟ s
p,a, we may use equivalent norms given by (3.2) and (3.3). Therefore, the X norm

of fn =
∑

λ∈∇ cλ,nψλ is either equivalent to



∑

j∈Z


∑

|λ|=j

|cλ,n|p



a/p



1/a

or
∥∥∥∥∥∥

(∑

λ∈∇
|cλ,nχλ|a

)1/a
∥∥∥∥∥∥
Lp

.

In both cases, we may invoke Fatou’s lemma to conclude that for the limit sequence

(cλ), we have



∑

j∈Z


∑

|λ|=j

|cλ|p



a/p



1/a

≤ lim inf
n→+∞



∑

j∈Z


∑

|λ|=j

|cλ,n|p



a/p



1/a

and
∥∥∥∥∥∥

(∑

λ∈∇
|cλχλ|a

)1/a
∥∥∥∥∥∥
Lp

≤ lim inf
n→+∞

∥∥∥∥∥∥

(∑

λ∈∇
|cλ,nχλ|a

)1/a
∥∥∥∥∥∥
Lp

.

Therefore, Assumption 1.2 holds for all Besov and Triebel-Lizorkin spaces.

We next discuss Assumption 1.1, for some specific examples of pairs X and Y

which satisfy the critical embedding property. The study of the nonlinear projector

QM is an important chapter of approximation theory. The process of approximating

a function

f =
∑

λ∈∇
dλψλ,
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by a function of the form
∑

λ∈EM

cλψλ,

with #(EM ) ≤ M is sometimes called best M -term approximation, and has been

studied extensively. The most natural choice is to take for EM the indices corre-

sponding to the largest coefficients |dλ| and to set cλ = dλ, which corresponds to

our definition of QM . However as already mentioned in Remark 1.2, other more rel-

evant choices could be used if necessary for proving the validity of Assumption 1.1

for certain pairs (X,Y ) and a specific instance will be mentioned below.

The study of the convergence of QMf towards f is particularly elementary in

the case where X = Ḃs
p,p and Y = Ḃt

q,q, with
1
p − 1

q = s−t
d . Indeed, according to

(3.2), we have for such spaces

‖f‖Ḃs
p,p

∼ ‖(dλ)λ∈∇‖�p and ‖f‖Ḃt
q,q

∼ ‖(dλ)λ∈∇‖�q ,

and therefore for any f ∈ X , using the decreasing rearrangement (dm)m>0 of the

|dλ|, we obtain

‖f −QMf‖Ḃt
q,q

∼


 ∑

λ/∈EM

|dλ|q



1/q

=

( ∑

m>M

|dm|q
)1/q

≤ |dM |1−p/q

( ∑

m>M

|dm|p
)1/q

≤
(
M−1

M∑

m=1

|dm|p
)1/p−1/q( ∑

m>M

|dm|p
)1/q

≤ M−(1/p−1/q)

(∑

m>0

|dm|p
)1/p

≤ M− s−t
d ‖(dλ)λ∈∇‖�p ∼M− s−t

d ‖f‖Ḃs
p,p
.

We have thus proved that

sup
‖f‖Ḃs

p,p
≤1

‖f −QMf‖Ḃt
q,q

≤ CM−σ, σ :=
s− t

d
> 0, (3.5)

which shows that Assumption 1.1 holds in such a case.

For other choices of X and Y , the study of best M -term approximation is more

involved and we just describe the available results without proof.
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The case of the embedding of the Besov space X = Ḃs
p,p into the Lebesgue space

Y = Lq, with q <∞ and 1
p − 1

q = s
d > 0 has first been treated in [9] — see also [6]

and [8] — where it was proved that

sup
‖f‖Ḃs

p,p
≤1

‖f −QMf‖Lq ≤ CM−σ, σ :=
s

d
> 0. (3.6)

Therefore Assumption 1.1 also holds in such a case. Note that when q ≤ 2, one

has continuous embedding of Ḃ0
q,q in Lq and therefore (3.6) may be viewed as a

consequence of (3.5), however this is no longer the case when 2 ≤ q <∞, yet (3.6)

still holds.

A finer result, that may be obtained by interpolation techniques, states that,

with the same relations between p and q, the Besov space Ḃs
p,q — which is strictly

larger than Ḃs
p,p is continuously embedded in Lq, and one may therefore ask if

Assumption 1.1 is still valid in such a case. A positive answer was given in [19] for

the more general embedding of X = Ḃs
p,q into Y = Ḟ t

q,b with 1
p − 1

q = s−t
d , where

b ∈ ]0,∞] is arbitrary: we have the convergence estimate

sup
‖f‖Ḃs

p,q
≤1

‖f −QMf‖Ḟ t
q,b

≤ CM−σ, σ :=
s− t

d
> 0, (3.7)

and therefore Assumption 1.1 is again valid. Note that Lq = Ḟ 0
q,2 is a particular

case.

For Besov spaces, the critical embedding of X = Ḃs
p,a into Y = Ḃt

q,b with
1
p − 1

q = s−t
d is known to hold whenever a ≤ b (it is an immediate consequence

of the norm equivalence (3.2)). The study of best M -term approximation in this

context was done in [19], where the following result was proved: there exists a

nonlinear projector QM of the form (1.7), such that when 1
a − 1

b ≥ s−t
d , one has

sup
‖f‖Ḃs

p,a
≤1

‖f −QMf‖Ḃt
q,b

≤ CM−σ, σ :=
s− t

d
> 0. (3.8)

The set EM (f) used in the definition of QM is however not generally based on

picking the M largest |dλ|, which is not a problem for our purposes as already

mentioned in Remark 1.2. Therefore, Assumption 1.1 is valid for such pairs.

In this last example, the restriction 1
a − 1

b ≥ s−t
d is stronger than a ≤ b which

is sufficient for the critical embedding. However, we may still obtain the validity

of Assumption 1.1 when a < b by a general trick which we shall re-use further:

introduce an auxiliary space Z with continuous embedding

X ⊂ Z ⊂ Y, (3.9)

such that Assumption 1.1 either holds for the embedding between X and Z,

or between Z and Y , which immediately implies the validity of Assumption 1.1
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between X and Y . In the present case we take

Z = Ḃs̃
p̃,a with t < s̃ < s,

1

p
− 1

p̃
=
s− s̃

d
.

The continuous embeddings (3.9) clearly hold. In addition, when s̃ is sufficiently

close to t, we have that 1
a − 1

b ≥ s̃−t
d , so that Assumption 1.1 is valid for the pair

(Z, Y ) according to (3.8), and thus also for (X,Y ).

Remark 3.1. It is not difficult to check that Assumption 1.1 does not hold for

the embedding of X = Ḃs
p,a into Y = Ḃt

q,a, and we also conjecture that the profile

decomposition does not generally exist for such an embedding. As an example,

consider a = ∞, and a sequence (un)n>0 obtained by piling up one wavelet at each

scale j = 0, . . . , n at position k = 0:

un =

n∑

j=0

2rjψ(2j ·).

All wavelets in un contribute equally to the X and Y norm (which is equivalent

to the supremum of the coefficients, equal to 1) and the extraction of profiles with

asymptotically orthogonal scale-space localization seems impossible.

The above trick based on the intermediate space Z may be used to prove

Assumption 1.1 for other types of critical embeddings:

• Embedding of Besov spaces into BMO:

Ḃs
p,p ⊂ BMO, s =

d

p
> 0,

which includes as a particular case the well-known embedding Ḣd/2 ⊂ BMO, and

may be easily proved from the wavelet characterization (3.2) and (3.4). Choosing

Z = Ḃs̃
p̃,p̃ for any 0 < s̃ < s and p̃ such that s̃ = d

p̃ , we clearly have the

continuous embeddings (3.9). In addition, Assumption 1.1 is valid for the pair

(X,Z) according to (3.5), and thus also for (X,Y ).

• Embedding of Besov spaces into Lorentz spaces:

Ḃs
p,a ⊂ Lq,b,

1

p
− 1

q
=
s

d
> 0,

which is valid for any a ≤ b. If a < b, we may introduce for any 0 < s̃ < s

Z = Ḃs̃
p̃,b,

1

p̃
− 1

q
=
s̃

d
> 0,

so that we have the continuous embeddings (3.9). In addition, we have already

proved that Assumption 1.1 holds for the pair (X,Z). It therefore holds for

the pair (X,Y ). One may easily check that Assumption 1.1 does not hold for

the embedding of X = Ḃs
p,a into Y = Lq,a, and conjecture that the profile
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decomposition does not generally exist for such an embedding, by an argument

analogous to the one in Remark 3.1.

• Embedding of Triebel-Lizorkin spaces into Triebel-Lizorkin or Besov spaces: for

any a, b > 0, consider X = Ḟ s
p,a and Y = Ḟ t

q,b with 1
p − 1

q = s−t
d . It is known, see

[29], that X is continuously embedded into

Z = Ḃs̃
p̃,p̃, s̃ < s and

1

p
− 1

p̃
=
s− s̃

d
.

If we assume t < s̃ < s, we have the continuous embeddings (3.9). Moreover,

we have already proved that Assumption 1.1 holds for the pair (Z, Y ). It there-

fore holds for the pair (X,Y ). The same type of reasoning allows one to prove

Assumption 1.1 for the embedding of X = Ḟ s
p,a into Y = Ḃt

q,b with b > p.

Remark 3.2. It is easily seen that if X and Y are a pair of spaces such that both

Assumptions 1.1 and 1.2 hold for a certain wavelet basis (ψλ), then the correspond-

ing vector fields spaces (X)d and (Y )d also satisfy the same assumptions for the

vector-valued wavelet basis

ψλ,i := ψλei, λ ∈ ∇, i = 1, . . . , d,

where ei = (0, . . . , 0, 1, 0, . . . , 0) is the canonical basis vector, and the wavelet coef-

ficients dλ are defined accordingly as vectors.

4. Stability of the Decomposition

Finally we want to show that the decomposition is stable in the sense that the sum

of the ‖φl‖X raised to an appropriate power remains bounded. In our discussion,

we distinguish between the cases where X is a Besov or Triebel-Lizorkin space. We

first address the Besov case.

Theorem 4.1. Assume that X = Ḃs
p,a with 1 ≤ p < ∞ and 1 ≤ a ≤ ∞. We then

have

‖(‖φl‖X)l>0‖�τ ≤ CK, τ := max{p, a}, (4.1)

where C is a constant that only depends on X and on the choice of the wavelet basis

and where K := supn≥0 ‖un‖X .

Proof. Fix an arbitrary L > 0 and let M be such that L ≤ L(M) as in Step 4 of

Sec. 2. For l = 1, . . . , L, we recall the approximate profiles

φl,Mλl(n)
=

∑

m∈E(l,M)

dmψλ(m,n)
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and we also define

φl,M,n :=
∑

m∈E(l,M)

dm,nψλ(m,n),

which are disjoint part of the wavelet expansion of un. More precisely, we have

un =
L∑

l=1

φl,M,n +
∑

m>M

dm,nψλ(m,n).

We next claim that if E1, . . . , EL are disjoint finite sets in ∇, then for any coefficient

sequence (dλ), one has




L∑

l=1

∥∥∥∥∥
∑

λ∈El

dλψλ

∥∥∥∥∥

τ

X




1/τ

≤ C

∥∥∥∥∥
L∑

l=1

∑

λ∈El

dλψλ

∥∥∥∥∥
X

, (4.2)

where C is a constant that only depends onX and on the choice of the wavelet basis,

and with the standard modification of the sum to the power 1/τ by a supremum

on the left-hand side when τ = ∞.

Before proving this claim, we first show that it leads to the conclusion of the

proof. Indeed, for l = 1, . . . , L, the functions φl,M,n are linear combinations of

wavelets with indices in disjoint finite sets E1, . . . , EL (that vary with n), and

therefore according to (4.2), when τ <∞,

(
L∑

l=1

‖φl,M,n‖τX

)1/τ

≤ C

∥∥∥∥∥
L∑

l=1

φl,M,n

∥∥∥∥∥
X

.

Using the unconditionality inequality (1.6), we thus find that for all n > 0

(
L∑

l=1

‖φl,M,n‖τX

)1/τ

≤ CK,

up to a multiplication of the constant C by D. Since ‖φl,Mλl(n)
− φl,M,n‖X → 0 as

n→ ∞, it follows that for any ε > 0 we have

(
L∑

l=1

‖φl,Mλl(n)
‖τX

)1/τ

≤ CK + ε,

for n sufficiently large. By the scaling invariance (1.3) we thus find that

(
L∑

l=1

‖φl,M‖τX

)1/τ

≤ CK.

Letting M go to +∞, we obtain the same inequality for the exact profiles

(
L∑

l=1

‖φl‖τX

)1/τ

≤ CK
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and we thus conclude that (4.1) holds, by letting L → +∞. The case τ = ∞ is

treated in an exact similar way, replacing the sum to the power 1/τ by a supremum.

It remains to prove (4.2). We actually claim that this property holds with con-

stant C = 1 if we take for ‖ · ‖X the equivalent norm given by (3.2). This is obvious

when p = a = τ since this equivalent norm is then simply the 
τ norm of the wavelet

coefficients. When p �= a, we distinguish between the cases p < a and p > a. We

denote by

Ej,l := {λ ∈ El; |λ| = j},
so that

El =
⋃

j∈Z
El,j .

First consider the case τ = a > p. We then have, when a <∞,

∥∥∥∥∥
L∑

l=1

∑

λ∈El

dλψλ

∥∥∥∥∥

a

X

=
∑

j∈Z




L∑

l=1

∑

λ∈El,j

|dλ|p


a/p

≥
∑

j∈Z

L∑

l=1


 ∑

λ∈El,j

|dλ|p


a/p

=

L∑

l=1

∑

j∈Z


 ∑

λ∈El,j

|dλ|p


a/p

=

L∑

l=1

∥∥∥∥∥
∑

λ∈El

dλψλ

∥∥∥∥∥

a

X

,

where for the inequality we have simply used the fact that a/p > 1. Therefore (4.2)

holds. When a = ∞, we obtain the same result by writing

∥∥∥∥∥
L∑

l=1

∑

λ∈El

dλψλ

∥∥∥∥∥
X

= sup
j∈Z




L∑

l=1

∑

λ∈El,j

|dλ|p


1/p

≥ sup
j∈Z


sup

l≤L

∑

λ∈El,j

|dλ|p


1/p

= sup
l≤L

sup
j∈Z


 ∑

λ∈El,j

|dλ|p


1/p

= sup
l≤L

∥∥∥∥∥
∑

λ∈El

dλψλ

∥∥∥∥∥
X

.
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We next consider the case τ = p > a. To treat this case where p <∞ by hypothesis,

we introduce the notation

bj,l :=


 ∑

λ∈El,j

|dλ|p


a/p

,

and we remark that (4.2) is then equivalent to



∑

l


∑

j

bj,l



p/a



a/p

≤
∑

j

(∑

l

|bj,l|p/a
)a/p

,

which trivially holds by applying the triangle inequality in 
p/a.

Our last result addresses the Triebel-Lizorkin case.

Theorem 4.2. Assume that X = Ḟ s
p,a with 1 ≤ p < ∞ and 1 ≤ a ≤ ∞. We then

have

‖(‖φl‖X)l>0‖�p ≤ CK, (4.3)

where C is a constant that only depends on X and on the choice of the wavelet basis

and where K := supn≥0 ‖un‖X .

Proof. We only give the proof in the case a < ∞, the case a = ∞ being treated

by the same type of arguments up to notational changes. Fix an arbitrary L > 0

and let M be such that L ≤ L(M) as in Step 4 of Sec. 2. By the unconditionality

(1.6) of the wavelet basis with respect to X , we first observe that

∥∥∥∥∥
M∑

m=1

dm,nψλ(m,n)

∥∥∥∥∥
X

≤ DK .

It follows that for any ε > 0, we have

∥∥∥∥∥
M∑

m=1

dmψλ(m,n)

∥∥∥∥∥
X

≤ DK + ε

for n sufficiently large. Recall that the sum inside the norm may be rewritten in

terms of the approximate profiles:

M∑

m=1

dmψλ(m,n) =

L∑

l=1

∑

m∈E(l,M)

dmψλ(m,n) =

L∑

l=1

φl,Mλl(n)
.
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We associate to the approximate profile φl,M a piecewise constant function χl,M

defined by

χl,M
λl(n)

:=
∑

m∈E(l,M)

|dmχλ(m,n)|a,

where χλ = 2dj/pχ(2j · −k) with χ = χ[0,1]d for λ ∼ (j, k). Thus according to the

wavelet characterization (3.3) of Triebel-Lizorkin spaces, we have

c

∫

Rd

|χl,M
λl(n)

(x)|p/adx ≤ ‖φl,Mλl(n)
‖pX ≤ C

∫

Rd

|χl,M
λl(n)

(x)|p/adx,

as well as

c

∫

Rd

∣∣∣∣∣
L∑

l=1

χl,M
λl(n)

(x)

∣∣∣∣∣

p/a

dx ≤
∥∥∥∥∥

M∑

m=1

dm,nψλ(m,n)

∥∥∥∥∥

p

X

≤ C

∫

Rd

∣∣∣∣∣
L∑

l=1

χl,M
λl(n)

(x)

∣∣∣∣∣

p/a

dx,

where 0 < c ≤ C only depends on the choice of the wavelet basis. In the case where

a ≤ p, we obviously have

L∑

l=1

∫

Rd

|χl,M
λl(n)

(x)|p/adx ≤
∫

Rd

∣∣∣∣∣
L∑

l=1

χl,M
λl(n)

(x)

∣∣∣∣∣

p/a

dx.

It therefore follows that

L∑

l=1

‖φl,M‖pX =

L∑

l=1

‖φl,Mλl(n)
‖pX ≤ C

c

∥∥∥∥∥
M∑

m=1

dm,nψλ(m,n)

∥∥∥∥∥

p

X

≤ C

c
(DK + ε)p.

Since this holds for any ε > 0, and L > 0 andM such that L ≤ L(M), we therefore

obtain (4.3) by a limiting argument, up to renaming (C/c)1/pD into C.

In order to reach the same conclusion in the case p < a, we need to exploit

the “asymptotic orthogonality” of the scales λl(n) as expressed by (1.13) in the

statement of Theorem 1.1. For this purpose, let us define

Ωn := Supp

(
L∑

l=1

χl,M
λl(n)

)
=

L⋃

l=1

Supp(χl,M
λl(n)

).

For any x ∈ Ωn, we denote by l∗ the number in {1, . . . , L} such that

χl∗,M
λl∗ (n)

(x) = max
l=1,...,L

χl,M
λl(n)

(x).

Note that l∗ depends on both x and n. We claim that a consequence of (1.13) is that

the function χl∗,M
λl∗ (n)

tends to dominate all other χl,M
λl(n)

at the point x as n → +∞
in the following uniform sense:

lim
n→+∞

min
x∈Ωn

χl∗,M
λl∗ (n)

(x)
∑L

l=1
χl,M
λl(n)

(x) − χl∗,M
λl∗ (n)

(x)
= +∞. (4.4)
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Before proving this claim, let us show how it leads us to the conclusion of the

theorem. We observe that (4.4) also means that |χl∗,M
λl∗ (n)

|p/a tends to dominate all

other |χl,M
λl(n)

|p/a at the point x as n → +∞. Therefore, for any ε > 0, we have for

n large enough

L∑

l=1

|χl,M
λl(n)

(x)|p/a ≤ (1 + ε)|χl∗,M
λl∗ (n)

(x)|p/a ≤ (1 + ε)

∣∣∣∣∣
L∑

l=1

χl,M
λl(n)

(x)

∣∣∣∣∣

p/a

for all x ∈ Ωn, and thus

L∑

l=1

∫

Rd

|χl,M
λl(n)

(x)|p/adx ≤ (1 + ε)

∫

Rd

∣∣∣∣∣
L∑

l=1

χl,M
λl(n)

(x)

∣∣∣∣∣

p/a

dx.

We may then conclude the proof as in the case a ≤ p.

It remains to prove (4.4). Our first observation is that the asymptotic orthogo-

nality of the scales λl(n) expressed by (1.13), shows that for a given x, the profile

scales |λl(n)| for those l ∈ {1, . . . , L} such that x ∈ Supp(χl,M
λl(n)

) tend to get far

apart as n grows. Indeed, these λl(n)’s do not get far apart in space since the

supports of χl,M
λl(n)

all contain the same point x.

We introduce l∗ the number that maximizes |λl(n)| among all those l ∈
{1, . . . , L} such that x ∈ Supp(χl,M

λl(n)
). Similar to l∗, the number l∗ depends both

of x and n. From the previous observation, we know that for any arbitrarily large

B > 0, there exists n0 such that for all n ≥ n0, we have

|λl∗(n)| ≥ |λl(n)|+B, (4.5)

for all l ∈ {1, . . . , L} such that x ∈ Supp(χl,M
λl(n)

) and l �= l∗. Moreover, we may

choose this n0 independent of the selected point x for the same B > 0.

We claim that as n grows χl∗,M
λl∗ (n)

tends to dominate all other χl,M
λl(n)

at the point

x as n→ +∞, in the sense that

lim
n→+∞

min
x∈Ωn

χl∗,M
λl∗ (n)

(x)
∑L

l=1
χl,M
λl(n)

(x) − χl∗,M
λl∗ (n)

(x)
= +∞. (4.6)

This clearly implies (4.4) (and shows that l∗ = l∗ for n large enough).

In order to prove (4.6), we observe that if x ∈ Supp(χl,M
λl(n)

) for some l ∈
{1, . . . , L}, we may then frame χl,M

λl(n)
(x) according to

c2
adjl(n)

p ≤ χl,M
λl(n)

(x) ≤ C2
adjl(n)

p

where

jl(n) := min
m∈E(l,M)

|λ(m,n)| and Jl(n) := max
m∈E(l,M)

|λ(m,n)|,
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and where

c := |dM |a and C :=

M∑

m=1

|dm|a.

The constants c and C of course depend on L and M which are fixed at that stage.

Note that from the construction of the profile there exists A > 0 (that also depends

on L and M) such that for all l ∈ {1, . . . , L}

|λl(n)| −A ≤ jl(n) ≤ Jl(n) ≤ |λl(n)|+A,

and therefore, up to a modification in the constants c and C we may write

c2
ad|λl(n)|

p ≤ χl,M
λl(n)

(x) ≤ C2
ad|λl(n)|

p .

Combining this observation with (4.5), we easily obtain (4.6).

Acknowledgment

G.K. was supported by the EPSRC Science and Innovation award to the Oxford

Centre for Nonlinear PDE (EP/E035027/1).

References

1. R. Adams, Sobolev Spaces, Pure and Applied Mathematics, Vol. 65 (Academic Press,
1975).

2. H. Bahouri and P. Gérard, High frequency approximation of solutions to critical
nonlinear wave equations, Amer. J. Math. 121 (1999) 131–175.

3. H. Bahouri, M. Majdoub and N. Masmoudi, On the lack of compactness in the 2D
critical Sobolev embedding, J. Funct. Anal. 260 (2011) 208–252.

4. J. Ben Ameur, Description du défaut de compacité de l’injection de Sobolev sur le
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