284 research outputs found

    Estimating Indoor PM2.5 and CO Concentrations in Households in Southern Nepal: The Nepal Cookstove Intervention Trials

    Get PDF
    High concentrations of household air pollution (HAP) due to biomass fuel usage with unvented, insufficient combustion devices are thought to be an important health risk factor in South Asia population. To better characterize the indoor concentrations of particulate matter (PM2.5) and carbon monoxide (CO), and to understand their impact on health in rural southern Nepal, this study analyzed daily monitoring data collected with DataRAM pDR-1000 and LASCAR CO data logger in 2980 households using traditional biomass cookstove indoor through the Nepal Cookstove Intervention Trial–Phase I between March 2010 and October 2011. Daily average PM2.5 and CO concentrations collected in area near stove were 1,376 (95% CI, 1,331–1,423) μg/m3 and 10.9 (10.5–11.3) parts per million (ppm) among households with traditional cookstoves. The 95th percentile, hours above 100μg/m3 for PM2.5 or 6ppm for CO, and hours above 1000μg/m3 for PM2.5 or 9ppm for CO were also reported. An algorithm was developed to differentiate stove-influenced (SI) periods from non-stove-influenced (non-SI) periods in monitoring data. Average stove-influenced concentrations were 3,469 (3,350–3,588) μg/m3 for PM2.5 and 21.8 (21.1–22.6) ppm for CO. Dry season significantly increased PM2.5concentration in all metrics; wood was the cleanest fuel for PM2.5 and CO, while adding dung into the fuel increased concentrations of both pollutants. For studies in rural southern Nepal, CO concentration is not a viable surrogate for PM2.5 concentrations based on the low correlation between these measures. In sum, this study filled a gap in knowledge on HAP in rural Nepal using traditional cookstoves and revealed very high concentrations in these households

    Evaluation of concrete structures by combining non-destructive testing methods (SENSO project)

    Get PDF
    The management and maintenance of the built heritage is one of the main interests of the owners of concrete structures. The engineers wish to obtain quantitative information about concrete properties and their variability. Non-destructive testing (NDT) is very popular in this context as it quickly provides relevant information on the integrity and evolution of the material, but several kinds of indicators representative of the concrete condition need to be evaluated. A French Project, named SENSO, aims to develop methods for the non-destructive evaluation of concrete based on a multi-techniques approach. Several families of techniques are concerned (ultrasonic, electromagnetic, electrical, etc.). The main objective is to define the sensitivity of the techniques and the variability of the evaluation for each indicator concerned. To achieve this, a large experimental programme, involving a representative range of concretes and several indicators, has been carried out. A large database, linking the NDT observables and the indicators, allows the different observables to be distinguished in terms of quality (linked to the variability) and in terms of relevance for the characterisation of each indicator. The improvement of the indicator evaluation by means of technique combinatio

    Cross-correlating Carbon Monoxide Line-intensity Maps with Spectroscopic and Photometric Galaxy Surveys

    Get PDF
    Line-intensity mapping (LIM or IM) is an emerging field of observational work, with strong potential to fit into a larger effort to probe large-scale structure and small-scale astrophysical phenomena using multiple complementary tracers. Taking full advantage of such complementarity means, in part, undertaking line-intensity surveys with galaxy surveys in mind. We consider the potential for detection of a cross-correlation signal between COMAP and blind surveys based on photometric redshifts (as in COSMOS) or based on spectroscopic data (as with the HETDEX survey of Lyman-α\alpha emitters). We find that obtaining σz/(1+z)≲0.003\sigma_z/(1+z)\lesssim0.003 accuracy in redshifts and ≳10−4\gtrsim10^{-4} sources per Mpc3^3 with spectroscopic redshift determination should enable a CO-galaxy cross spectrum detection significance at least twice that of the CO auto spectrum. Either a future targeted spectroscopic survey or a blind survey like HETDEX may be able to meet both of these requirements.Comment: 19 pages + appendix (31 pages total), 16 figures, 6 tables; accepted for publication in Ap

    CCAT-prime: Science with an Ultra-widefield Submillimeter Observatory at Cerro Chajnantor

    Full text link
    We present the detailed science case, and brief descriptions of the telescope design, site, and first light instrument plans for a new ultra-wide field submillimeter observatory, CCAT-prime, that we are constructing at a 5600 m elevation site on Cerro Chajnantor in northern Chile. Our science goals are to study star and galaxy formation from the epoch of reionization to the present, investigate the growth of structure in the Universe, improve the precision of B-mode CMB measurements, and investigate the interstellar medium and star formation in the Galaxy and nearby galaxies through spectroscopic, polarimetric, and broadband surveys at wavelengths from 200 um to 2 mm. These goals are realized with our two first light instruments, a large field-of-view (FoV) bolometer-based imager called Prime-Cam (that has both camera and an imaging spectrometer modules), and a multi-beam submillimeter heterodyne spectrometer, CHAI. CCAT-prime will have very high surface accuracy and very low system emissivity, so that combined with its wide FoV at the unsurpassed CCAT site our telescope/instrumentation combination is ideally suited to pursue this science. The CCAT-prime telescope is being designed and built by Vertex Antennentechnik GmbH. We expect to achieve first light in the spring of 2021.Comment: Presented at SPIE Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX, June 14th, 201

    Cosmology with the Highly Redshifted 21cm Line

    Get PDF
    In addition to being a probe of Cosmic Dawn and Epoch of Reionization astrophysics, the 21cm line at z>6z>6 is also a powerful way to constrain cosmology. Its power derives from several unique capabilities. First, the 21cm line is sensitive to energy injections into the intergalactic medium at high redshifts. It also increases the number of measurable modes compared to existing cosmological probes by orders of magnitude. Many of these modes are on smaller scales than are accessible via the CMB, and moreover have the advantage of being firmly in the linear regime (making them easy to model theoretically). Finally, the 21cm line provides access to redshifts prior to the formation of luminous objects. Together, these features of 21cm cosmology at z>6z>6 provide multiple pathways toward precise cosmological constraints. These include the "marginalizing out" of astrophysical effects, the utilization of redshift space distortions, the breaking of CMB degeneracies, the identification of signatures of relative velocities between baryons and dark matter, and the discovery of unexpected signs of physics beyond the Λ\LambdaCDM paradigm at high redshifts.Comment: Science white paper submitted to Decadal 2020 surve
    • …
    corecore