75 research outputs found

    HLA class I-redirected anti-tumour CD4+T-cells require a higher TCR binding affinity for optimal activity than CD8+T-cells

    Get PDF
    CD4+ T helper cells are a valuable component of the immune response towards cancer. Unfortunately, natural tumour-specific CD4+ T-cells occur in low frequency, express relatively low affinity T-cell receptors (TCRs) and show poor reactivity towards cognate antigen. In addition, the lack of human leukocyte antigen (HLA) class II expression on most cancers dictates that these cells are often unable to respond to tumour cells directly. These deficiencies can be overcome by transducing primary CD4+ T-cells with tumour-specific HLA class I-restricted TCRs prior to adoptive transfer. The lack of help from the coreceptor CD8 glycoprotein in CD4+ cells might result in these cells requiring a different optimal TCR binding affinity. Here we compared primary CD4+ and CD8+ T-cells expressing wildtype and a range of affinity-enhanced TCRs specific for the HLA A*0201-restricted NY-ESO-1- and gp100 tumour antigens. Our major findings are: (i) redirected primary CD4+ T-cells expressing TCRs of sufficiently high affinity exhibit a wide range of effector functions, including cytotoxicity, in response to cognate peptide; and, (ii) optimal TCR binding affinity is higher in CD4+ T-cells than CD8+ T-cells. These results indicate that the CD4+ T-cell component of current adoptive therapies using TCRs optimised for CD8+ T-cells is below par and that there is room for substantial improvement. This article is protected by copyright. All rights reserved

    High-Affinity Small Molecule Inhibitors of T Cell Costimulation: Compounds for Immunotherapy

    Get PDF
    SummaryCostimulatory molecules are important regulators of T cell activation and thus favored targets for therapeutic manipulation of immune responses. One of the key costimulatory receptors is CD80, which binds the T cell ligands, CD28, and CTLA-4. We describe a set of small compounds that bind with high specificity and low nanomolar affinity to CD80. The compounds have relatively slow off-rates and block both CD28 and CTLA-4 binding, implying that they occlude the shared ligand binding site. The compounds inhibit proinflammatory cytokine release in T cell assays with submicromolar potency, and as such, they represent promising leads for the development of novel therapeutics for immune-mediated inflammatory disease. Our results also suggest that other predominantly ÎČ proteins, such as those that dominate the cell surface, may also be accessible as potentially therapeutic targets

    Evaluation of polygenic risk scores for breast and ovarian cancer risk prediction in BRCA1 and BRCA2 mutation carriers

    Get PDF
    Background: Genome-wide association studies (GWAS) have identified 94 common single-nucleotide polymorphisms (SNPs) associated with breast cancer (BC) risk and 18 associated with ovarian cancer (OC) risk. Several of these are also associated with risk of BC or OC for women who carry a pathogenic mutation in the high-risk BC and OC genes BRCA1 or BRCA2. The combined effects of these variants on BC or OC risk for BRCA1 and BRCA2 mutation carriers have not yet been assessed while their clinical management could benefit from improved personalized risk estimates. Methods: We constructed polygenic risk scores (PRS) using BC and OC susceptibility SNPs identified through population-based GWAS: for BC (overall, estrogen receptor [ER]-positive, and ER-negative) and for OC. Using data from 15 252 female BRCA1 and 8211 BRCA2 carriers, the association of each PRS with BC or OC risk was evaluated using a weighted cohort approach, with time to diagnosis as the outcome and estimation of the hazard ratios (HRs) per standard deviation increase in the PRS. Results: The PRS for ER-negative BC displayed the strongest association with BC risk in BRCA1 carriers (HR = 1.27, 95% confidence interval [CI] = 1.23 to 1.31, P = 8.2 x 10(53)). In BRCA2 carriers, the strongest association with BC risk was seen for the overall BC PRS (HR = 1.22, 95% CI = 1.17 to 1.28, P = 7.2 x 10(-20)). The OC PRS was strongly associated with OC risk for both BRCA1 and BRCA2 carriers. These translate to differences in absolute risks (more than 10% in each case) between the top and bottom deciles of the PRS distribution; for example, the OC risk was 6% by age 80 years for BRCA2 carriers at the 10th percentile of the OC PRS compared with 19% risk for those at the 90th percentile of PRS. Conclusions: BC and OC PRS are predictive of cancer risk in BRCA1 and BRCA2 carriers. Incorporation of the PRS into risk prediction models has promise to better inform decisions on cancer risk management

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Maternal substance use and integrated treatment programs for women with substance abuse issues and their children: a meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rate of women with substance abuse issues is increasing. Women present with a unique constellation of risk factors and presenting needs, which may include specific needs in their role as mothers. Numerous integrated programs (those with substance use treatment and pregnancy, parenting, or child services) have been developed to specifically meet the needs of pregnant and parenting women with substance abuse issues. This synthesis and meta-analysis reviews research in this important and growing area of treatment.</p> <p>Methods</p> <p>We searched PsycINFO, MedLine, PubMed, Web of Science, EMBASE, Proquest Dissertations, Sociological Abstracts, and CINAHL and compiled a database of 21 studies (2 randomized trials, 9 quasi-experimental studies, 10 cohort studies) of integrated programs published between 1990 and 2007 with outcome data on maternal substance use. Data were summarized and where possible, meta-analyses were performed, using standardized mean differences (<it>d</it>) effect size estimates.</p> <p>Results</p> <p>In the two studies comparing integrated programs to no treatment, effect sizes for urine toxicology and percent using substances significantly favored integrated programs and ranged from 0.18 to 1.41. Studies examining changes in maternal substance use from beginning to end of treatment were statistically significant and medium sized. More specifically, in the five studies measuring severity of drug and alcohol use, the average effect sizes were 0.64 and 0.40, respectively. In the four cohort studies of days of use, the average effect size was 0.52. Of studies comparing integrated to non-integrated programs, four studies assessed urine toxicology and two assessed self-reported abstinence. Overall effect sizes for each measure were not statistically significant (<it>d </it>= -0.09 and 0.22, respectively).</p> <p>Conclusions</p> <p>Findings suggest that integrated programs are effective in reducing maternal substance use. However, integrated programs were not significantly more effective than non-integrated programs. Policy implications are discussed with specific attention to the need for funding of high quality randomized control trials and improved reporting practices.</p

    Prevalence and architecture of de novo mutations in developmental disorders.

    Get PDF
    The genomes of individuals with severe, undiagnosed developmental disorders are enriched in damaging de novo mutations (DNMs) in developmentally important genes. Here we have sequenced the exomes of 4,293 families containing individuals with developmental disorders, and meta-analysed these data with data from another 3,287 individuals with similar disorders. We show that the most important factors influencing the diagnostic yield of DNMs are the sex of the affected individual, the relatedness of their parents, whether close relatives are affected and the parental ages. We identified 94 genes enriched in damaging DNMs, including 14 that previously lacked compelling evidence of involvement in developmental disorders. We have also characterized the phenotypic diversity among these disorders. We estimate that 42% of our cohort carry pathogenic DNMs in coding sequences; approximately half of these DNMs disrupt gene function and the remainder result in altered protein function. We estimate that developmental disorders caused by DNMs have an average prevalence of 1 in 213 to 1 in 448 births, depending on parental age. Given current global demographics, this equates to almost 400,000 children born per year
    • 

    corecore