35 research outputs found
p25/Cdk5-mediated retinoblastoma phosphorylation is an early event in neuronal cell death
In large models of neuronal cell death, there is a tight correlation between Cdk5 deregulation and cell-cycle dysfunction. However, pathways that link Cdk5 to the cell cycle during neuronal death are still unclear. We have investigated the molecular events that precede p25/Cdk5-triggered neuronal death using a neuronal cell line that allows inducible p25 expression. In this system, no sign of apoptosis was seen before 24 hours of p25 induction. Thus, at that time, cell-cycle-regulatory proteins were analysed by immunoblotting and some of them showed a significant deregulation. Interestingly, after time-course experiments, the earliest feature correlated with p25 expression was the phosphorylation of the retinoblastoma protein (Rb). Indeed, this phosphorylation was observed 6 hours after p25 induction and was abolished in the presence of a Cdk5 inhibitor, roscovitine, which does not inhibit the usual Rb cyclin-D kinases Cdk4 and Cdk6. Furthermore, analyses of levels and subcellular localization of Cdk-related cyclins did not reveal any change following Cdk5 activation, arguing for a direct effect of Cdk5 activity on Rb protein. This latter result was clearly demonstrated by in vitro kinase assays showing that the p25-Cdk5 complex in our cell system phosphorylates Rb directly without the need for any intermediary kinase activity. Hence, Rb might be an appropriate candidate that connects Cdk5 to cell-cycle deregulation during neuronal cell death
Specificity of Anti-Tau Antibodies when Analyzing Mice Models of Alzheimer's Disease: Problems and Solutions
Aggregates of hyperphosphorylated tau protein are found in a group of diseases called tauopathies, which includes Alzheimer's disease. The causes and consequences of tau hyperphosphorylation are routinely investigated in laboratory animals. Mice are the models of choice as they are easily amenable to transgenic technology; consequently, their tau phosphorylation levels are frequently monitored by Western blotting using a panel of monoclonal/polyclonal anti-tau antibodies. Given that mouse secondary antibodies can recognize endogenous mouse immunoglobulins (Igs) and the possible lack of specificity with some polyclonal antibodies, non-specific signals are commonly observed. Here, we characterized the profiles of commonly used anti-tau antibodies in four different mouse models: non-transgenic mice, tau knock-out (TKO) mice, 3xTg-AD mice, and hypothermic mice, the latter a positive control for tau hyperphosphorylation. We identified 3 tau monoclonal antibody categories: type 1, characterized by high non-specificity (AT8, AT180, MC1, MC6, TG-3), type 2, demonstrating low non-specificity (AT270, CP13, CP27, Tau12, TG5), and type 3, with no non-specific signal (DA9, PHF-1, Tau1, Tau46). For polyclonal anti-tau antibodies, some displayed non-specificity (pS262, pS409) while others did not (pS199, pT205, pS396, pS404, pS422, A0024). With monoclonal antibodies, most of the interfering signal was due to endogenous Igs and could be eliminated by different techniques: i) using secondary antibodies designed to bind only non-denatured Igs, ii) preparation of a heat-stable fraction, iii) clearing Igs from the homogenates, and iv) using secondary antibodies that only bind the light chain of Igs. All of these techniques removed the non-specific signal; however, the first and the last methods were easier and more reliable. Overall, our study demonstrates a high risk of artefactual signal when performing Western blotting with routinely used anti-tau antibodies, and proposes several solutions to avoid non-specific results. We strongly recommend the use of negative (i.e., TKO) and positive (i.e., hypothermic) controls in all experiments
Two-Dimensional Electrophoresis of Tau Mutants Reveals Specific Phosphorylation Pattern Likely Linked to Early Tau Conformational Changes
The role of Tau phosphorylation in neurofibrillary degeneration linked to Alzheimer's disease remains to be established. While transgenic mice based on FTDP-17 Tau mutations recapitulate hallmarks of neurofibrillary degeneration, cell models could be helpful for exploratory studies on molecular mechanisms underlying Tau pathology. Here, “human neuronal cell lines” overexpressing Wild Type or mutated Tau were established. Two-dimensional electrophoresis highlights that mutated Tau displayed a specific phosphorylation pattern, which occurs in parallel to the formation of Tau clusters as visualized by electron microscopy. In fact, this pattern is also displayed before Tau pathology onset in a well established mouse model relevant to Tau aggregation in Alzheimer's disease. This study suggests first that pathological Tau mutations may change the distribution of phosphate groups. Secondly, it is possible that this molecular event could be one of the first Tau modifications in the neurofibrillary degenerative process, as this phenomenon appears prior to Tau pathology in an in vivo model and is linked to early steps of Tau nucleation in Tau mutants cell lines. Such cell lines consist in suitable and evolving models to investigate additional factors involved in molecular pathways leading to whole Tau aggregation
Dimethyl Sulfoxide Induces Both Direct and Indirect Tau Hyperphosphorylation
Dimethyl sulfoxide (DMSO) is widely used as a solvent or vehicle for biological studies, and for treatment of specific disorders, including traumatic brain injury and several forms of amyloidosis. As Alzheimer’s disease (AD) brains are characterized by deposits of β-amyloid peptides, it has been suggested that DMSO could be used as a treatment for this devastating disease. AD brains are also characterized by aggregates of hyperphosphorylated tau protein, but the effect of DMSO on tau phosphorylation is unknown. We thus investigated the impact of DMSO on tau phosphorylation in vitro and in vivo. One hour following intraperitoneal administration of 1 or 2 ml/kg DMSO in mice, no change was observed in tau phosphorylation. However, at 4 ml/kg, tau was hyperphosphorylated at AT8 (Ser202/Thr205), PHF-1 (Ser396/Ser404) and AT180 (Thr231) epitopes. At this dose, we also noticed that the animals were hypothermic. When the mice were maintained normothermic, the effect of 4 ml/kg DMSO on tau hyperphosphorylation was prevented. On the other hand, in SH-SY5Y cells, 0.1% DMSO induced tau hyperphosphorylation at AT8 and AT180 phosphoepitopes in normothermic conditions. Globally, these findings demonstrate that DMSO can induce tau hyperphosphorylation indirectly via hypothermia in vivo, and directly in vitro. These data should caution researchers working with DMSO as it can induce artifactual results both in vivo and in vitro
Modélisation et étude des mécanismes moléculaires de la dégénérescence neurofibrillaire : vers la compréhension d'une mort neuronale liée à la dysfonction des protéines Tau
In 1907, Aloïs Alzheimer presented the clinical and neuropathological characteristics of a neurodegenerative disorder that was later named Alzheimer's Disease. This pathology is mainly characterized by two histological lesions called Amyloïd deposits and Neurofibrillary Degeneration. On the one hand, Amyloïd deposits are localized at the outside of neurons and are constituted of Amyloïd- peptide aggregates. On the other hand, neurodegenerating neurons display aggregates called NFTs for "Neurofibrillary Tangles" which are composed of Paired Helical Filaments of hyperphosphorylated and abnormally phosphorylated Tau proteins. These Tau aggregates are also found in a group of dementia so called "Tauopathies". This kind of observation leds to the hypothesis that NFTs are a central event in the degenerating process. However, even if aggregated Tau is always hyperphosphorylated and abnormally phosphorylated, the question of whether the phosphorylation alone or in combination with additional cofactors is involved in Tau aggregation and neuronal death is not well elucidated yet. To investigate this relationship, we developed cellular and mice models based on the overexpression of Tau protein bearing pathological mutations which are known to trigger Tau aggregation in several inherited dementia. The analysis of transgenic mice shows an increased Tau pathology with aging. This pathology displays the main features of NFTs observed in AD (Tau Hyperphosporylation, Tau abnormal phosphorylation and Tau aggregation). Moreover, the lack of motor deficits has allowed us to perform cognitive tests and to discover spatial memory deficits in these transgenic mice. However, overexpression of Tau mutants in neuronal-like cell lines induces some conformational changes associated to a specific Tau phosphorylation pattern without formation of NFTs like aggregates. We also undertook studies of a cellular model, based on the overexpression of p25 which induces a deregulated Cdk5 kinase activity which is associated with abnormal Tau phosphorylation. However, in the same manner, we did not see any Tau aggregation in this cellular model. Altogether, these data suggest that in our cellular models, neither the abnormal phosphorylation nor pathological mutations alones are able to trigger Tau aggregation. Additional events are likely needed to induce NFTs formation. In this way, we hypothesized that some cellular pathways including Tau dephosphorylation and Tau degradation ways could be involved in our cellular model to avoid Tau aggregation. Hence, a decrease in efficiency of such systems with aging could participate in the NFTs formation process in humans and in transgenic mice models. Studies of these "protective systems" in our models could represent interesting perspective of research for the understanding of AD and Tauopathies physiopathology.En 1907, Aloïs Alzheimer publiait, pour la première fois, la description des deux lésions histologiques caractéristiques observées dans le cerveau d'une patiente âgée de 56 ans et atteinte d'une démence présénile qui, par la suite, sera dénommée Maladie d'Alzheimer (MA). Ces deux lésions correspondant à l'accumulation de matériel protéique présentent des caractéristiques différentes de par leur contenu protéique et leur localisation. Ainsi, on distinguera, d'une part, les dépôts amyloïdes, caractérisés par l'accumulation, dans le milieu extracellulaire, d'un peptide appelé peptide amyloïde- . D'autre part, on observera une lésion intra-neuronale appelée dégénérescence neurofibrillaire (DNF) qui correspond à l'accumulation de protéines Tau qui sont retrouvées hyperphosphorylées, anormalement phosphorylées et agrégées sous la forme de structures fibrillaires hélicoïdales singulières appelées PHFs pour " Paired Helical Filaments ". Notre laboratoire s'intéresse tout particulièrement à cette lésion qui est au cœur du processus dégénératif de la MA et d'un ensemble de pathologies démentielles appelées " Tauopathies ". Cependant, si la dérégulation de phosphorylation de Tau semble être au cœur du processus dégénératif de ces pathologies, le rôle exact de celle-ci et les mécanismes mis en jeu restent encore mal connus. Ce travail, se place ainsi dans le cadre général de la recherche des mécanismes moléculaires impliqués dans la mort neuronale liée à Tau et de l'étude de la signification et du rôle de la dérégulation de la phosphorylation de Tau dans son agrégation et au cours de la mort neuronale. Afin de répondre à ces objectifs, nous avons entrepris l'étude de modèles permettant de moduler soit l'état de phosphorylation de Tau par le biais du complexe kinasique p25/Cdk5 soit de moduler le caractère agrégatif de Tau par l'utilisation de mutations pathologiques de Tau connues chez l'homme pour mener à son agrégation et à des syndrômes démentiels (Démences Fronto-Temporales avec syndrôme Parkinsonien liées au chromosome 17). De plus, notre travail a permis la caractérisation d'un modèle in vivo de DNF présentant l'ensemble des caractéristiques de la pathologie Tau observée au cours de la MA. Ce modèle, en raison de l'absence de troubles moteurs, a permis de réaliser des études comportementales, montrant l'existence de troubles de mémoire spatiale chez ces souris. En parallèle à ce modèle pertinent d'un point de vue physiopathologique, le développement et l'analyse d'un modèle cellulaire de type neuronal basé sur la surexpression de protéines Tau mutées ont permis de montrer l'existence de modifications conformationnelles des protéines Tau mutées qui sont associées à un état particulier de phosphorylation. Cependant, dans ce contexte, il apparaît que les mutations, à elles seules ne semblent pas suffisantes pour mener à l'agrégation des protéines Tau sous la forme de PHFs. De plus, l'analyse d'un modèle cellulaire de type neuronal présentant une phosphorylation anormale de Tau ne montre pas non plus l'existence de structures analogues aux PHFs. L'ensemble de ce travail suggère que la phosphorylation anormale ou les mutations de Tau ne sont pas suffisantes pour mener au phénotype pathologique caractéristique de la DNF qui semble nécessiter d'autres événements moléculaires. Nous émettons également l'hypothèse que des voies compensatoires impliquant des systèmes de déphosphorylation des protéines Tau et/ou des systèmes de dégradation protéique pourraient être mis en jeu dans nos modèles cellulaires et être ainsi responsables de l'absence de phénotype pathologique. La diminution d'activité de ces systèmes de compensation au cours du vieillissement chez l'homme et dans les modèles murins pourrait alors concourir à l'apparition de la DNF. Ainsi, l'étude de ces systèmes dans nos différents modèles constitue des perspectives prometteuses pour l'avancée dans la compréhension de l'étiopathologie de la MA et des Tauopathies
Modélisation et étude des mécanismes moléculaires de la dégénérescence neurofibrillaire (vers la compréhension d'une mort neuronale liée à la dysfonction des protéines tau)
En 1907, Aloïs Alzheimer publiait, pour la première fois, la description des deux lésions histologiques caractéristiques observées dans le cerveau d'une patiente âgée de 56 ans et atteinte d'une démence présénile qui, par la suite, sera dénommée Maladie d'Alzheimer (MA). Ces deux lésions correspondant à l'accumulation de matériel protéique présentent des caractéristiques différentes de par leur contenu protéique et leur localisation. Ainsi, on distinguera, d'une part, les dépôts amyloïdes, caractérisés par l'accumulation, dans le milieu extracellulaire, d'un peptide appelé peptide amyloïde- . D'autre part, on observera une lésion intra-neuronale appelée Dégénérescence neurofibrillaire (DNF) qui correspond à l'accumulation de protéines Tau qui sont retrouvées hyperphosphorylées, anormalement phosphorylées et agrégées sous la forme de structures fibrillaires hélicoïdales singulières appelées PHFs pour Paired Helical Filaments . Notre laboratoire s'intéresse tout particulièrement à cette lésion qui est au coeur du processus dégénératif de la MA et d'un ensemble de pathologies démentielles appelées Tauopathies . Cependant, si cette dérégulation de phosphorylation semble être au coeur du processus dégénératif de ces pathologies, le rôle exact de celle-ci et les mécanismes mis en jeu restent encore mal connus. Ce travail, se place ainsi dans le cadre général de la recherche des mécanismes moléculaires impliqués dans la mort neuronale liée à Tau et à étudier la signification et le rôle de la dérégulation de la phosphorylation de Tau dans son agrégation et au cours de la mort neuronale. Afin de répondre à ces objectifs, nous avons entrepris l'étude de modèles permettant de moduler soit l'état de phosphorylation de Tau par le biais du complexe kinasique p25/Cdk5 soit de moduler le caractère agrégatif de Tau par l'utilisation de mutations pathologiques de Tau connues chez l'homme pour mener à une agrégation de Tau et à des syndrômes démentiels (Démences Fronto-Temporales avec syndrôme Parkinsonien liées au chromosome 17). De plus, notre travail a abouti au développement et à la caractérisation d'un modèle in vivo de DNF présentant l'ensemble des caractéristiques de la pathologie Tau observée au cours de la MA. Ce modèle, en raison de l'absence de troubles moteurs, a permis de réaliser des études comportementales, montrant l'existence de troubles de mémoire spatiale chez ces souris. En parallèle de ce modèle pertinent d'un point de vue physiopathologique, le développement et l'analyse d'un modèle cellulaire de type neuronal basé sur la surexpression de protéines Tau mutées ont permis de montrer l'existence de modifications conformationnelles des protéines Tau mutées qui étaient associées à un état particulier de phosphorylation. Cependant, dans ce contexte, il apparaît que les mutations, à elles seules ne semblent pas suffisantes pour mener à l'agrégation des protéines Tau sous la forme de PHFs. De plus, l'analyse d'un modèle cellulaire de type neuronal présentant une phosphorylation anormale de Tau ne montre pas non plus l'existence de structures analogues aux PHFs. L'ensemble de ce travail suggère que la phosphorylation anormale ou les mutations de Tau ne sont pas suffisantes pour mener au phénotype pathologique caractéristique de la DNF qui nécessite d'autres événements moléculaires. Nous faisons également l'hypothèse que des stratégies compensatoires impliquant des systèmes de déphosphorylation des protéines Tau et/ou des systèmes de dégradation protéiques pourraient être mises en jeu, dans nos modèles cellulaires, et être responsables de l'absence de phénotype pathologique dans ces modèles. La diminution d'activité de ces systèmes de compensation au cours du vieillissement chez l'homme et dans les modèles murins pourraient alors concourir à l'apparition de la DNF. Ainsi, l'étude de ces systèmes dans nos modèles constitue des perspectives prometteuses dans l'avancée de la compréhension de l'étiopathologie de la MA et des Tauopathies.LILLE2-BU Santé-Recherche (593502101) / SudocSudocFranceF
Alzheimer's disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits.
Tau transgenic mice are valuable models to investigate the role of tau protein in Alzheimer's disease and other tauopathies. However, motor dysfunction and dystonic posture interfering with behavioral testing are the most common undesirable effects of tau transgenic mice. Therefore, we have generated a novel mouse model (THY-Tau22) that expresses human 4-repeat tau mutated at sites G272V and P301S under a Thy1.2-promotor, displaying tau pathology in the absence of any motor dysfunction. THY-Tau22 shows hyperphosphorylation of tau on several Alzheimer's disease-relevant tau epitopes (AT8, AT100, AT180, AT270, 12E8, tau-pSer396, and AP422), neurofibrillary tangle-like inclusions (Gallyas and MC1-positive) with rare ghost tangles and PHF-like filaments, as well as mild astrogliosis. These mice also display deficits in hippocampal synaptic transmission and impaired behavior characterized by increased anxiety, delayed learning from 3 months, and reduced spatial memory at 10 months. There are no signs of motor deficits or changes in motor activity at any age investigated. This mouse model therefore displays the main features of tau pathology and several of the pathophysiological disturbances observed during neurofibrillary degeneration. This model will serve as an experimental tool in future studies to investigate mechanisms underlying cognitive deficits during pathogenic tau aggregation.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
Subacute per OS lithium treatment decreases Tau phosphorylation and neurofibrillary tangles load in G272V/P301S mutant Tau transgenic mice
info:eu-repo/semantics/publishe
Recommended from our members
Specificity of anti-tau antibodies when analyzing mice models of Alzheimer's disease: problems and solutions.
Aggregates of hyperphosphorylated tau protein are found in a group of diseases called tauopathies, which includes Alzheimer's disease. The causes and consequences of tau hyperphosphorylation are routinely investigated in laboratory animals. Mice are the models of choice as they are easily amenable to transgenic technology; consequently, their tau phosphorylation levels are frequently monitored by Western blotting using a panel of monoclonal/polyclonal anti-tau antibodies. Given that mouse secondary antibodies can recognize endogenous mouse immunoglobulins (Igs) and the possible lack of specificity with some polyclonal antibodies, non-specific signals are commonly observed. Here, we characterized the profiles of commonly used anti-tau antibodies in four different mouse models: non-transgenic mice, tau knock-out (TKO) mice, 3xTg-AD mice, and hypothermic mice, the latter a positive control for tau hyperphosphorylation. We identified 3 tau monoclonal antibody categories: type 1, characterized by high non-specificity (AT8, AT180, MC1, MC6, TG-3), type 2, demonstrating low non-specificity (AT270, CP13, CP27, Tau12, TG5), and type 3, with no non-specific signal (DA9, PHF-1, Tau1, Tau46). For polyclonal anti-tau antibodies, some displayed non-specificity (pS262, pS409) while others did not (pS199, pT205, pS396, pS404, pS422, A0024). With monoclonal antibodies, most of the interfering signal was due to endogenous Igs and could be eliminated by different techniques: i) using secondary antibodies designed to bind only non-denatured Igs, ii) preparation of a heat-stable fraction, iii) clearing Igs from the homogenates, and iv) using secondary antibodies that only bind the light chain of Igs. All of these techniques removed the non-specific signal; however, the first and the last methods were easier and more reliable. Overall, our study demonstrates a high risk of artefactual signal when performing Western blotting with routinely used anti-tau antibodies, and proposes several solutions to avoid non-specific results. We strongly recommend the use of negative (i.e., TKO) and positive (i.e., hypothermic) controls in all experiments
Early axonopathy preceding neurofibrillary tangles in mutant tau transgenic mice.
Neurodegenerative diseases characterized by brain and spinal cord involvement often show widespread accumulations of tau aggregates. We have generated a transgenic mouse line (Tg30tau) expressing in the forebrain and the spinal cord a human tau protein bearing two pathogenic mutations (P301S and G272V). These mice developed age-dependent brain and hippocampal atrophy, central and peripheral axonopathy, progressive motor impairment with neurogenic muscle atrophy, and neurofibrillary tangles and had decreased survival. Axonal spheroids and axonal atrophy developed early before neurofibrillary tangles. Neurofibrillary inclusions developed in neurons at 3 months and were of two types, suggestive of a selective vulnerability of neurons to form different types of fibrillary aggregates. A first type of tau-positive neurofibrillary tangles, more abundant in the forebrain, were composed of ribbon-like 19-nm-wide filaments and twisted paired helical filaments. A second type of tau and neurofilament-positive neurofibrillary tangles, more abundant in the spinal cord and the brainstem, were composed of 10-nm-wide neurofilaments and straight 19-nm filaments. Unbiased stereological analysis indicated that total number of pyramidal neurons and density of neurons in the lumbar spinal cord were not reduced up to 12 months in Tg30tau mice. This Tg30tau model thus provides evidence that axonopathy precedes tangle formation and that both lesions can be dissociated from overt neuronal loss in selected brain areas but not from neuronal dysfunction.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe