901 research outputs found

    Real-time structured video decoding and display

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Program in Media Arts & Sciences, 1995.Includes bibliographical references (leaves 57-59).by Brett Dawson Granger.M.S

    Anodic stripping voltammetry with graphite felt electrodes for the trace analysis of silver

    Get PDF
    Graphite felt (GF) is a mass produced porous carbon electrode material commonly used in redox flow batteries. Previous studies have suggested GF may have valuable applications in electroanalysis as a low cost disposable carbon electrode material, although most GF sensors have used flow cell arrangements. In this work, an elegant wetting technique is employed that allows GF electrodes to be used in quiescent solution to detect trace levels of silver in water via anodic stripping voltammetry. GF electrodes display good repeatability and a limit of detection of 25 nM of Ag+ in 0.1 M HNO3, with a linear range spanning two orders of magnitude. This compares to a value of around 140 nM when using conventional carbon electrodes. Combined with their low cost and disposable nature, the results suggest GF electrodes can make a valuable contribution to electroanalysis

    A systematic review to explore the effectiveness of physical health and psychosocial interventions on anxiety, depression and quality of life in people living with blood cancer

    Get PDF
    Problem identification. Anxiety and depression are more prevalent in hematological cancer patients who experience unpredictable illness trajectories and aggressive treatments compared to solid tumor patients. Efficacy of psychosocial interventions targeted at blood cancer patients is relatively unknown. This systematic review examined trials of physical health and psychosocial interventions intending to improve levels of anxiety, depression, and/or quality of life in adults with hematological cancers. Literature search. PubMed and CINAHL databases were used to perform a systematic review of literature using PRISMA guidelines. Data evaluation/synthesis. Twenty-nine randomized controlled trials of 3232 participants were included. Thirteen studies were physical therapy, nine psychological, five complementary, one nutritional and one spiritual therapy interventions. Improvements were found in all therapy types except nutritional therapy. Conclusions. Interventions that included personal contact with clinicians were more likely to be effective in improving mental health than those without. Implications for psychosocial oncology. Various psychosocial interventions can be offered but interactive components appear crucial for generating long-standing improvements in quality of life, anxiety and depression

    Modifications to student quarantine policies in K-12 schools implementing multiple COVID-19 prevention strategies restores in-person education without increasing SARS-CoV-2 transmission risk, January-March 2021

    Get PDF
    OBJECTIVE: To determine whether modified K-12 student quarantine policies that allow some students to continue in-person education during their quarantine period increase schoolwide SARS-CoV-2 transmission risk following the increase in cases in winter 2020-2021. METHODS: We conducted a prospective cohort study of COVID-19 cases and close contacts among students and staff (n = 65,621) in 103 Missouri public schools. Participants were offered free, saliva-based RT-PCR testing. The projected number of school-based transmission events among untested close contacts was extrapolated from the percentage of events detected among tested asymptomatic close contacts and summed with the number of detected events for a projected total. An adjusted Cox regression model compared hazard rates of school-based SARS-CoV-2 infections between schools with a modified versus standard quarantine policy. RESULTS: From January-March 2021, a projected 23 (1%) school-based transmission events occurred among 1,636 school close contacts. There was no difference in the adjusted hazard rates of school-based SARS-CoV-2 infections between schools with a modified versus standard quarantine policy (hazard ratio = 1.00; 95% confidence interval: 0.97-1.03). DISCUSSION: School-based SARS-CoV-2 transmission was rare in 103 K-12 schools implementing multiple COVID-19 prevention strategies. Modified student quarantine policies were not associated with increased school incidence of COVID-19. Modifications to student quarantine policies may be a useful strategy for K-12 schools to safely reduce disruptions to in-person education during times of increased COVID-19 community incidence

    Applications of advanced metrology for understanding the effects of drying temperature in the lithium-ion battery electrode manufacturing process

    Get PDF
    The performance of lithium-ion batteries is determined by the architecture and properties of electrodes formed during manufacturing, particularly in the drying process when solvent is removed and the electrode structure is formed. Temperature is one of the most dominant parameters that influences the process, and therefore a comparison of temperature effects on both NMC622-based cathodes (PVDF-based binder) and graphite-based anodes (water-based binder) dried at RT, 60, 80, 100 and 120 °C has been undertaken. X-ray computed tomography showed that NMC622 particles concentrated at the surface of the cathode coating except when dried at 60 °C. However, anodes showed similar graphite distributions at all temperatures. The discharge capacities for the cathodes dried at 60, 80, 100 and 120 °C displayed the following trend: 60 °C < 80 °C < 100 °C < 120 °C as C-rate was increased which was consistent with the trends found in adhesion testing between 60 and 120 °C. Focused-ion beam scanning electrode microscopy and energy-dispersive X-ray spectroscopy suggested that the F-rich binder distribution was largely insensitive to temperature for cathodes. In contrast, conductivity enhancing fine carbon agglomerated on the upper surface of the active NMC particles in the cathode as temperature increased. The cathode dried at RT had the highest adhesion force of 0.015 N mm−1 and the best electrochemical rate performance. Conversely, drying temperature had no significant effect on the electrochemical performance of the anode, which was consistent with only a relatively small change in the adhesion, related to the use of lower adhesion water-based binders

    Mitogen-activated protein kinase phosphatase-2 deletion modifies ventral tegmental area function and connectivity and alters reward processing

    Get PDF
    Mitogen-activated protein kinases (MAPKs) regulate normal brain functioning, and their dysfunction is implicated in a number of brain disorders. Thus, there is great interest in understanding the signalling systems that control MAPK functioning. One family of proteins that contribute to this process, the mitogen-activated protein kinase phosphatases (MKPs), directly inactivate MAPKs through dephosphorylation. Recent studies have identified novel functions of MKPs in foetal development, the immune system, cancer and synaptic plasticity and memory. In the present study, we performed an unbiased investigation using MKP-2-/- mice to assess whether MKP-2 plays a global role in modulating brain function. Local cerebral glucose utilization is significantly increased in the ventral tegmental area (VTA) of MKP-2-/- mice, with connectivity analysis revealing alterations in VTA functional connectivity, including a significant reduction in connectivity to the nucleus accumbens and hippocampus. In addition, spontaneous excitatory postsynaptic current frequency, but not amplitude, onto putative dopamine neurons in the VTA is increased in MKP-2-/- mice, which indicates that increased excitatory drive may account for the increased VTA glucose utilization. Consistent with modified VTA function and connectivity, in behavioural tests MKP-2-/- mice exhibited increased sucrose preference and impaired amphetamine-induced hyperlocomotion. Overall, these data reveal that MKP-2 plays a role in modulating VTA function and that its dysfunction may contribute to brain disorders in which altered reward processing is present

    RELICS: Strong Lens Models for Five Galaxy Clusters From the Reionization Lensing Cluster Survey

    Get PDF
    Strong gravitational lensing by galaxy clusters magnifies background galaxies, enhancing our ability to discover statistically significant samples of galaxies at z>6, in order to constrain the high-redshift galaxy luminosity functions. Here, we present the first five lens models out of the Reionization Lensing Cluster Survey (RELICS) Hubble Treasury Program, based on new HST WFC3/IR and ACS imaging of the clusters RXC J0142.9+4438, Abell 2537, Abell 2163, RXC J2211.7-0349, and ACT-CLJ0102-49151. The derived lensing magnification is essential for estimating the intrinsic properties of high-redshift galaxy candidates, and properly accounting for the survey volume. We report on new spectroscopic redshifts of multiply imaged lensed galaxies behind these clusters, which are used as constraints, and detail our strategy to reduce systematic uncertainties due to lack of spectroscopic information. In addition, we quantify the uncertainty on the lensing magnification due to statistical and systematic errors related to the lens modeling process, and find that in all but one cluster, the magnification is constrained to better than 20% in at least 80% of the field of view, including statistical and systematic uncertainties. The five clusters presented in this paper span the range of masses and redshifts of the clusters in the RELICS program. We find that they exhibit similar strong lensing efficiencies to the clusters targeted by the Hubble Frontier Fields within the WFC3/IR field of view. Outputs of the lens models are made available to the community through the Mikulski Archive for Space TelescopesComment: Accepted to Ap

    RELICS: High-Resolution Constraints on the Inner Mass Distribution of the z=0.83 Merging Cluster RXJ0152.7-1357 from strong lensing

    Get PDF
    Strong gravitational lensing (SL) is a powerful means to map the distribution of dark matter. In this work, we perform a SL analysis of the prominent X-ray cluster RXJ0152.7-1357 (z=0.83, also known as CL 0152.7-1357) in \textit{Hubble Space Telescope} images, taken in the framework of the Reionization Lensing Cluster Survey (RELICS). On top of a previously known z=3.93z=3.93 galaxy multiply imaged by RXJ0152.7-1357, for which we identify an additional multiple image, guided by a light-traces-mass approach we identify seven new sets of multiply imaged background sources lensed by this cluster, spanning the redshift range [1.79-3.93]. A total of 25 multiple images are seen over a small area of ~0.4 arcmin2arcmin^2, allowing us to put relatively high-resolution constraints on the inner matter distribution. Although modestly massive, the high degree of substructure together with its very elongated shape make RXJ0152.7-1357 a very efficient lens for its size. This cluster also comprises the third-largest sample of z~6-7 candidates in the RELICS survey. Finally, we present a comparison of our resulting mass distribution and magnification estimates with those from a Lenstool model. These models are made publicly available through the MAST archive.Comment: 15 Pages, 7 Figures, 4 Tables Accepted for publication in Ap
    corecore