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Abstract

Increasing amounts of research are being dedicated to the representation of video
sequences in terms of component parts which are rendered and composited according to
scripting information. Representations chosen range from two-dimensional layers all the
way through full three-dimensional databases. These types of representations show great
promise for compression, interactivity, and post-production flexibility and are collectively
labeled "structured video" for the purposes of this thesis.

This thesis implements a flexible decoder for structured video representations. The
implemented decoder supports 2D, 2-1/2D (2D with z-buffers), and 3D objects as well as
explicit and parametric transformations and error signals. A simple scripting language is
also created for use in testing the system. Using the environment thus created, an example
structured video application, contextual resizing, is implemented and presented.
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Chapter 1

Introduction

Using computers to assemble and view movies is by no means a novel concept. As

early as 1972, Catmull used "fast" hidden-surface removal algorithms and smooth polygon

shading techniques along with a primitive motion picture description language to generate

computer images. A computer controlled movie camera aimed at a high-precision scope

recorded these computer-generated movies [Catmull72]. Movies which come out of

Hollywood today are marvels of digital image compositing and computerized retouching of

images, making previously impossible scenes commonplace.

Decreasing prices of both computer memory and mass storage devices,

accompanied by increasing technology in both hardware and software are bringing real-

time image generation and display ever closer to the common user. Most high end personal

computers now boast video capabilities in which they claim to be able to display images of

MxN pixel resolution at F frames per second.

The Information and Entertainment Group of the MIT Media Laboratory has for

several years been investigating moving away from pixel- and frame-based image

representations and toward structural representations of moving scenes. This promises

both greater coding efficiency and the ability (whether in post-production or in interactive

viewing) to manipulate the data in a physically or semantically meaningful way [Bove94b].

As a simple example of this, consider a sequence in which a single object moves in a

straight line across a static background. Using a 1Kx1K, 24-bit color representation on a



60Hz progressive-scan display will result in 180 megabytes transmitted per second of the

sequence being displayed. If, on the other hand, the receiver already has a model of both

the background and the object in local memory, the information transmitted at display time

can be reduced to a simple command such as "Object A moves from point 1 to point 2

along a linear path in front of background B in time T." Granted, the description will

probably be in some scripting language, not in English, and the receiver will need a method

for synthesizing the proper sequence based on the description given, but even if the

description were much more complex, transmitting it would still be a substantial savings

over the 180 megabytes per second required in the frame-based representation.

More likely, the receiver will not already have a model of the background and the

object in memory and those models will have to be transmitted as well. But even should

this be the case, a 1Kx1K color background can be described in 3 megabytes and an object

smaller than the background will obviously require less than that. The resultant maximum

of 6 megabytes plus a small script will still be a tremendous savings when compared to 180

megabytes per second, as long as the models enable more than one thirtieth of a second of

video to be synthesized. More complex models will require more memory to describe, but

will also enable longer sequences to be created before the next models must be transmitted.

A video sequence described in the manner outlined above is an example of

structured video. For the purposes of this thesis, structured video refers to the coding of

an image sequence by describing it in terms of components that make up the scene. One

natural breakdown is actors and backgrounds, but others are also possible (see the

examples given in section 1.1).

Another benefit inherent in the structured video description of this sequence is that

no mention is made in the description (or script) of resolution or of the frame rate of the

output device. Thus, given the proper hardware and software, the above script combined

with the data already in memory could describe similar sequences on any number of display

devices with varying resolutions and/or frame rates. This makes structured video



representations ideal for implementing open architecture (OAR) television as defined in

[Bender90], which is scalable both in resolution and in time, but structured video

environments can be used for more than television playback, no matter how scalable.

In structured video environments, there is no requirement that the components come

from digitized video sources. In combination with a scene analysis system, for example, a

structured video decoder can simply reconstruct a transmitted video sequence. Using the

same system, however, real actors can be inserted into a synthetic background (or vice-

versa), or a completely synthetic three-dimensional world can be rendered for display.

Interactivity is also much easier in a structured video environment, since by

definition the scene is broken down into component parts. Knowing the components

makes it a simple thing to have any component respond to the state of the system or to user

input. Similarly, structured video representations should allow for easier semantic searches

through stored video. A request such as "Find the episode in which so-and-so finds a

certain object in the living room" actually becomes feasible in a structured video

environment.

This thesis implements a decoder as well as an environment for the decoding and

synthesis of structured video sequences. The implemented system is designed to

accommodate many varying representations of data, both real and synthetic, as well as to

allow interactivity with the various components described based on user input. The script

which describes the desired output is based on time rather than frame rates to allow even

greater flexibility.

1.1 Examples of Structured Video

One possible method of describing a scene is to segment it into objects that would

be considered foreground and objects which would be considered background. In



[McLean9 1], for example, a method is explored for low-bandwidth transmission of video

sequences which attempts to take advantage of the structure within the sequence. In this

system, actors and other large independent objects are segmented out of the scene. From

what remains of the sequence, a model of the background is constructed which is stored

locally at the receiver and so does not need to be transmitted. The actors and other objects

which are to be inserted into the scene are then transmitted along with parameters

describing how the background itself is to be animated, and from this data the original

sequence is reconstructed.

A different approach is suggested by Wang and Adelson [Wang94]. In their

system, moving images are represented by a collection of 2D layers, typically ordered by

depth. Distinct components of the image are then represented by separate layers. Along

with the intensity maps which define the basic image, additional maps are used which add

information about velocity, attenuation, or changes between frames. A depth map may also

be attached which gives a distinct depth to every point in the 2D layer (depth maps are also

often called "z-buffers" and 2D objects which include z-buffers are called 2-1/2D objects by

many authors). Thus in this system a single object moving in front of a background may

be simply described by two intensity maps, an attenuation map (or "mask"), and a velocity

map. A more complete and accurate description might include a delta map ("change map")

for error corrections, as well as motion blur and depth maps.

As an example of a system which incorporates structured video concepts to create

an output sequence, consider the "video finger" application created by John Watlington

[Watlington89]. Video finger monitors the state of a shared computer workspace and

creates a synthetic sequence which displays information about the state of the system such

as which users are currently logged in and to a limited extent what they are currently doing

on the system (e.g. compiling, reading news, sitting idle). This is achieved without the use

of a physical camera by storing a collection of digitized sequences of each user performing

some basic tasks such as entering and sitting down, reading, or even falling asleep. Video



finger then selects the correct users and sequences based on information returned by the

system being monitored and inserts these sequences into a background to create the final

synthetic movie.

More recently, researchers have developed a virtual studio system in which

digitized video of actors may be combined with other footage shot at a different time or

even with 3D sets synthesized using computer graphics techniques [Kazui94]. In this

system, actors are correctly positioned and scaled based upon parameters that are obtained

from sensors placed on actual cameras to determine position, orientation, and focal length,

or from virtual cameras controlled by the system operator. The separate components are

then composited in a back-to-front manner for proper occlusion of hidden surfaces.

The above-cited examples show that structured video representations are being

considered more and more for their capacity to decrease the amount of data necessary to

represent a video sequence while at the same time increasing the flexibility and

manipulability of the same data. All of these examples are quite different in the

representation and reconstruction schemes chosen, however, and much less research

appears to be going towards the creation of a flexible structured video decoder that might be

called on to create sequences from a variety of different representations, particularly when

the reconstruction is desired in real-time for display on an output device.

1.2 A Generic Structured-Video Decoder

After examining the above examples of structured video coding, as well as thinking

about how to maintain an open and flexible system, a generic structured video decoding

pipeline has been proposed [Bove94a]. It is envisioned that the data may take on various

representations and that the pipeline must be able to process several types of objects,

including but not limited to:



* 2D objects - These are simply two dimensional arrays of pixels, which are

assumed to lie all at the same depth specified by the script. They may also

exhibit transparency as defined by an additional "alpha" channel. In general, it is

hoped that 2D objects will be digitized at the maximum resolution at which it will

eventually be displayed, as enlarging images tends to make them blurry or

blocky and thus deteriorates the quality of the output.

* 2 1/2D objects - These are 2D objects with an added depth value at every pixel,

specified by a z-buffer, which is used for compositing.

* 3D objects - In the system implemented in this thesis, 3D objects are represented

by particle databases. These are a collection of points, where each point has an

x, y, and z position value as well as an intensity or color value. These are treated

the same as three dimensional computer graphics objects which require rendering

before they can be displayed. As hardware developments allow, transformed

polygons may also be supported in the future.

In addition to the above-described object types, several other types of information

need to be accepted by a flexible system in order to deal with representations such as

Adelson and Wang's layers or even MPEG coders. These objects include:

- explicit transformations - These may be specified as full arrays of values to be

applied to every point of an object or frame. They may be also defined in the

script parametrically such as would be the case with affine transformations (see

section A.1.6).

- error signals - 2D arrays of values which are added to processed objects or to

composited frames to correct for errors in the encoding scheme.

Figure 1-1 shows a block diagram of the data processing portion of the decoder

pipeline. Before the final sequence can be output, whether it be to display or file or another
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Figure 1-1: Data processing pipeline of a generic structured video decoder. Not
shown is the script interpreter which controls the operations of each stage of this
pipeline.

output device, it is assumed that the various types of objects will need to be processed in

some way. All 3D objects will need to be rendered, for example. This includes geometry

transformations on each point in the object as well as compositing the results into an output

buffer. 2D and 2-1/2D objects might need to be warped or scaled. If the final image

consists of more than one object, which will be the case in most sequences, those objects

will need to be composited together. The compositing stage uses a z-buffer algorithm to

display only the visible surfaces of each object in the final image. Error signals might also

need to be added into the final output to complete the image.

Depending on which data paths are enabled in this generic pipeline, various types of

decoders can be modeled, as is shown in Figure 1-2, ranging from an ordinary hybrid

predictive coder up through a full 3D synthetic computer graphic scene renderer.
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Figure 1-2: A number of different configurations of the generic pipeline shown in
figure 1-1 are possible, enabling the decoding of a variety of different coding methods.
In this figure, gray datapaths are inactive and dashed datapaths may be enabled by the
algorithm if needed.



1.3 Thesis Overview

This thesis implements the data processing pipeline described in the previous

section as well as a script interpreter which is not shown, with one notable exception: no

data decompression scheme is implemented. It is assumed that decoders already exist for

the various ways in which the incoming data may be encoded, such as transform coding or

run-length coding, and that they can easily be incorporated into the pipeline at a later time.

The resulting structured video decoding environment resembles a simple computer graphics

animation system in that a mechanism is provided by which objects digitized at different

times or with differing parameters can be converted to common units and made part of a

three-dimensional world where they can be manipulated with a simple scripting language.

This world is then viewed by defining a virtual camera. Extensions to the world are made

which allow for the description of explicit transformations and error signals as objects as

well as for controlling how those transformations and errors are used in the pipeline.

Chapter 2 provides a brief introduction to the Cheops system hardware and

software on which the structured video environment presented in this thesis is

implemented. The Cheops system is chosen for several reasons. First, the Cheops system

architecture is designed with high-bandwidth video transfers in mind. In addition, it is

hoped that the resulting environment will be friendlier and more conducive to testing new

algorithms and developing applications on the Cheops system than the environment which

is currently in place.

A description of how the data processing pipeline presented in Section 1.2 is

implemented on the Cheops system is given in Chapter 3, as well as a discussion of how

the various types of objects (2D, 2-1/2D, 3D) are processed by the system. Wherever

possible, specialized Cheops system hardware is used in an attempt to achieve real-time

performance with the system.



The script interpreting system is presented in Chapter 4. The basic structures used

to describe a single frame are discussed along with the mechanism used to describe the

creation of sequences from consecutive frames. It is expected that various different user

interfaces to this system will be explored, including the one presented in Appendix A. As

long as all those interfaces create output in the form of the structures described in Chapter

4, the system should have no difficulty creating the desired output.

Several examples which have already been implemented using this structured video

system are described in Chapter 5. A few additional ideas for applications which have not

yet been tried are also proposed.

Finally, Chapter 6 summarizes some of the results obtained using the structured

video system, analyzing both the performance of the system as well as the ease of its use.

Recommendations are made as to how system performance might be improved, and ideas

are presented for using this system in combination with other recent research in video

sequence creation, both real and synthetic.

Three appendices are also provided. Appendix A describes a simple scripting

language which has been developed in conjunction with the structured video decoder. A

sample script is provided along with the output it creates. How to add commands to the

script is also explained in this appendix. Appendix B describes the file format which has

been developed to describe 2D, 2-1/2D, and 3D objects. Appendix C discusses the

specifics of how the data processing pipeline was implemented in the current Cheops

environment.



Chapter 2

The Cheops Imaging System

The Cheops Imaging System is a compact, modular platform for acquisition, real-

time processing, and display of digital video sequences and model-based representations of

moving scenes, and is intended as both a laboratory tool and a prototype architecture for

future programmable video decoders [Bove94b].

2.1 Hardware

The Cheops system hardware is divided into modules based on the stages of video

processing: input/memory modules (M1), processing modules (P2), and output/display

modules (01/02). Up to four of each type of module may be present in the system at one

time, allowing for a broad range of system configurations. These modules are

interconnected via three linear buses, including two capable of sustaining high-bandwidth

transfers on the order of 120 Mbytes/sec. These buses (called "Nile" buses) can be used to

transfer data from a P2 module to be displayed on an output module, from an M1 memory

module to a P2 module where it can be processed, or even in between P2 modules where

different processing elements may reside.



In addition to the inherent modularity of the system, Cheops is designed to be both

hardware and software configurable. Rather than using a large number of general-purpose

processors and dividing up image processing tasks spatially, Cheops abstracts out a set of

basic, computationally intensive stream operations that may be performed in parallel and

embodies them in specialized hardware [Bove94b]. On each P2 processor board, eight

memory units are connected through a full crosspoint switch to up to eight stream

processing units. A single memory unit consists of dual-ported dynamic memory and a

two-dimensional direct memory access (DMA) controller called a "flood controller" which

can transfer a stream of data through the crosspoint switch at up to 40 Msample/sec to the

specialized stream processors. Six of these stream processors reside on removable sub-

modules (two per sub-module). Thus the hardware configuration is easily changed by

appropriately selecting sub-modules to include in the system and hardware is easily

upgraded by creating new sub-modules as opposed to completely redesiging the processor

module. Figure 2-1 shows a highly simplified block diagram of the P2 processor module.

A number of stream processors have been developed for the Cheops system, but

two prove to be of particular use in the development of a structured video decoder. The

first is a flexible filter processor which can be used to perform both one- and two-

dimensional filtering, multiplication of vectors by matrices, and multiplication of one

stream by another. The second is a remap/composite unit which performs image warping

and also incorporates a 16-bit hardware z-buffer for graphics compositing and hidden

surface removal.

2.2 Software

As mentioned previously, the Cheops system abstracts out a set of basic stream

operations that may be performed in parallel. This parallelism is very important to the



Figure 2-1: Block diagram of the Cheops P2 processor module. Memory units are

denoted with the label VRAM, while stream processor sub-modules are labeled SP.

performance obtained in the Cheops system. The hardware is set up with enough control

signals such that up to three stream transfers may occur simultaneously contingent that they

utilize separate memory banks and different stream processors. Thus, for example, the

three color components of a color image can all be filtered at the same time, provided there

are at least three filter units in the system configuration. A programmer who plans on

doing much filtering of color images would therefore probably like to ensure that there are



at least three filters in the system. In general, however, the user will not want to and

should not have to be bothered with the details of which stream processors are in which

daughter card slots in the system, or even whether certain stream processors are currently

in the system at all. For this reason, as well as to simplify management of the parallel

transfers, the NORMAN resource management daemon and the RMAN interface library

were developed for the Cheops system.

The NORMAN daemon manages the stream processors and flood controllers by

maintaining scoreboards and wait queues for each [Shen92]. A transfer through a stream

processor is started as soon as that processor along with the source and destination memory

banks requested by the transfer are free, and all other transfers upon which the current one

has been said to be dependent have completed. Thus Cheops is programmed as a data flow

computer in which algorithms are described as data flow graphs specifying operations to be

performed on streams of data by the stream processors and the dependencies among those

operations. NORMAN itself handles the setting up and enabling of the hardware so that

the user does not need to worry about that. The user, however, must still provide the

parameters to be used in setting up the hardware.

Since the data structures which describe the configuration of the various processors

are rather complicated and tedious to initialize manually each time, the RMAN (Resource

MANagement) interface library to NORMAN was also developed. The RMAN library

provides routines for the creation of the structures that define many basic stream operation

in which a large number of the parameters which the hardware requires have been set to

common default values. The user can then specify a filter operation, for example, with

only the essential parameters, such as x and y dimension of the buffer, source and

destination addresses, and the specific filter taps to be used. Additional functions provide

access to the other hardware parameters so that the user can customize the operation as

needed. The RMAN library also provides mechanisms for specifying dependencies



between operations and the linking of operations into a complete pipeline which can then be

passed in to NORMAN where it will be executed as the resources become available.



Chapter 3

The Data Processing Pipeline

Section 1.2 introduces the generic structured video data-processing pipeline that is

implemented in this thesis. This Chapter addresses the specifics of how this pipeline is

implemented on the Cheops system.

Figure 3-1 shows a slightly more simplified diagram of the data-processing

pipeline, indicating that aside from the script interpreter which is described later, there are

only two main functional blocks that must be implemented, regardless of the type of object

being processed. The transformation unit includes geometry transformations and

projections of 3D objects, and positioning, scaling, and even explicit transformations

defined by motion vectors on 2D and 2-1/2D objects. The compositing unit takes each

object as it is output by the transformation unit (by now in a common representation) and

composites it into the final frame using a z-buffer algorithm.

3.1 The transformation unit

The transformation unit is the primary means by which this pipeline simulates a real

camera looking at a three-dimensional world model. It is the transformation unit that

projects 3D objects into 2-1/2D objects so that they can be displayed on 2D displays. The
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Figure 3-1: Simplified block diagram of the data processing pipeline shown in Figure
1-1. Again, the script interpreter which controls the operation of this pipeline is not
shown.

transformation unit also scales 2D and 2-1/2D objects to the proper dimensions they would

assume if they were in fact 3D objects placed at their respective positions in a three-

dimensional world being viewed by the specified camera. The projection and

transformations to which a photographic system subject objects in the world can be

modeled quite realistically by type of planar geometric projection known as perspective

projection, thus the transformation unit attempts to implement perspective projection for all

objects. For a description of perspective projections and view parameters, see section 4.2.

As previously shown in Figure 1-1, the transformation unit actually subdivides into

two different functional blocks based on whether the object to be processed is 3D or 2-1/2

or 2D.

3.1.1 3D Objects

In the current implementation of the pipeline, 3D objects are specified as particle

databases. This means that the data composing a 3D object consists of a collection of

points each of which has an associated x, y, and z position as well as a single intensity or

three color components. Since the entire collection of points defines the object, no

particular ordering of the data points is necessary. In general, only the points on the

surface ("surfels") of the object need to be included in the data, since internal points will

never be displayed and there is no need to process them.



One of the possible configurations of the Cheops filter processor is a render mode.

In this mode, the stream processor is capable of premultiplying a stream of 4x1 column

vectors with a 4x4 matrix which has been preloaded into the processor. [Foley90]

describes how 3D planar geometric transformations may be specified as 4x4 matrices.

Following this model, 3D object position data is stored in memory as 4-vectors of the form

[x y z w] where x, y, and z are provided in the object data transmitted to the decoder, and

w is an implementation-dependent value. The x, y, and z values provided in the object data

are assumed to be relative to the 3D object's own origin. Each object to be processed then

has a transformation matrix associated with it that specifies the position and orientation of

the object in the world. The 4x4 transformation matrix which is loaded into stream

processor is obtained by composing each object's individual transform matrix with the

matrix which is obtained from the view parameters. Every object is therefore multiplied by

a different total transformation matrix, but each point within a single object is multiplied by

the same matrix.

The final step necessary to complete a perspective projection on 3D objects is to

scale the projected x and y coordinates of each point correctly to correspond with the effect

caused by perspective foreshortening. This effect is achieved by multiplying each point by

the scale factor f/z, where f is the focal length of the camera and z is the transformed z

coordinate of the point to be scaled. This proves to be troublesome to implement in the

Cheops system hardware. The filter processor can be configured to perform stream

multiplication, but no hardware currently exists which can perform stream division. Focal

length is fixed in a single frame, so if all points were at the same z position it would be

trivial to perform the single division in software and then use the hardware to multiply the

xy stream by the single scaling factor. In 3D objects, however, the transformed z

coordinate is potentially different at every point. In computer graphics systems, the w of

the [x y z w] vector contains the f/z factor and so perspective foreshortening is applied by

dividing the x, y, and z by the w. Stream multiplication of 1/w could be performed by the



Cheops filter hardware using a lookup table to find the value of 1/w. However, no lookup

table hardware exists in the Cheops system which makes a hardware implementation

currently impossible. Since one of the driving factors in the implementation of this pipeline

is an attempt to achieve real-time performance, it was decided that perspective projection of

3D objects would therefore not be implemented because a software implementation would

be much too slow to make the system useful.

Once a 3D object has been passed through the transformation unit, it is basically a

2-1/2D object and is ready to be passed to the compositing unit, which will be described in

section 3.2.

3.1.2 2D & 2-1/2D Objects

One obvious method of incorporating a 2D or 2-1/2D object into a three

dimensional world is to turn it into a 3D object by creating x, y, and z position values for

every point in the object. After all, the x and y coordinates for each of the points in the 2D

array of pixels is implied by the x and y offset of the pixel from the start of the two-

dimensional array making up the object, and the z value is either uniform and specified by

the script (2D objects), or is contained in a z-buffer (2-1/2D objects). The resultant 3D

object could then be passed through the 3D transformation unit as described previously.

Several problems arise with this treatment of 2D objects, however, making it

undesirable for the purposes of this system. One of the major problems is that 2D objects

are flat so that every point in them lies in a single plane. Subjecting these objects to generic

3D rotations will in general not produce usable views, and on occasion will even produce

single vertical lines, if the 2D object is viewed directly from the side. 2-1/2D objects may

fare slightly better, since z values do exist for them. However, the z-buffers are discrete

valued, and will thus not create continuous surfaces when viewed from certain angles. In

general, it will be desirable to keep 2D and 2-1/2D objects always directly facing the

camera. Another problem with creating 3D objects from 2D objects is that arbitrary origin



points cannot be specified for each object. Even within objects that are composed of

several views (for example, a set of views of an actor which will be used in sequence to

simulate walking), each view might have a different point which would be considered the

origin, upon which it is easiest to base all positioning and path planning. A third problem

with 2D objects being used as 3D objects is that it is very difficult if not impossible to

determine the real-world dimensions of a 2D object from the resolution at which it is

digitized without knowing a great deal about the equipment which performed the

digitization. When attempting to realistically combine objects which have been digitized at

different times or which have been filmed using different camera parameters, this

information will be important and will not always be readily available to the user.

In this pipeline, 2D objects are not simply treated as 3D objects, and a separate

transformation unit is created for them. In this unit, 2-1/2D objects are treated identically to

2D objects, thus in the description that follows, wherever 2D objects are mentioned, unless

explicitly stated otherwise it should be assumed that 2-1/2D objects receive the same

treatment.

When a 2D object is encountered, it will be transformed in one of two ways. If an

explicit transformation expressed as a vector field or affine parameters is provided, the

object will be transformed according to that transformation and then passed on to the

compositing unit. If no explicit transformation is provided, then it is assumed that the 2D

object is intended to be treated similarly to a 3D object in that it will be placed at a location

in the world and transformed according to the view parameters which have been

established. In such a case, the only transformations which will be applied to the object are

scaling and/or translation.

The case of explicit transformation is implemented using the remap/composite unit

in the Cheops system. In remapping mode, the unit takes two two-dimensional streams as

input: a stream of intensity values, and a stream of x,y offset vectors which are applied to

the intensity values. These vectors can be applied as write vectors (the offset is applied



before the intensity is written into memory), or as read vectors (the offset is used to

calculate the address from which the intensity will be read). In this implementation the

vector fields are used as read vectors, since read vectors will ensure that every output pixel

gets an intensity, whereas write vectors may not write intensities to all pixels, leaving holes

in the output. If the vector field is provided along with the 2D object, then both streams are

merely passed to the remap processor and the transformation is performed. If the

transformation is specified in terms of affine parameters in the script, then those parameters

are used to create a vector field of the appropriate dimensions to match the 2D object data,

and then the transformation is performed using the remap unit.

If the 2D object is to be treated as an object in a world and transformed as if it were

a 3D object, several more calculations must be performed, and several assumptions are

made. The first assumption is that 2D objects will always directly face the camera; that is,

they will always be viewed at the same angle from which they were filmed. This means

that rotation of a single 2D object is not allowed, only scaling and translation. However,

rotation is often simulated with 2D objects by having a series of views taken at various

angles around the object. A normal vector indicating the orientation of the 2D object can

then be compared to the vector which defines the camera angle to choose the appropriate

view of the 2D object to be shown, based on the angle from which it is being viewed. This

automated view selection based on angle is not currently implemented in the pipeline, but is

fairly straightforward.

In order for a 2D object to be placed into a three dimensional world, several things

must happen. First, the raw data in the 2D object must be scaled into world units. If the

object were 3D, it would then be transformed based on its position and the view

parameters. However, since all the points lie at the same depth, and since 2D objects will

not be processed in the same way as 3D objects, only the origin point of the object is

actually transformed. A mechanism is provided in the object data definition to define the

scale factor which converts from pixels into world units as well as the to define the origin



point of the object (see Appendix B). If this information is not provided, the origin of the

object is assumed to be its pixelwise midpoint in x and y dimensions and the resolution in

pixels is assumed to correspond exactly to the units of the world into which it is being

placed. The second scale factor that is applied to the object is the effect of perspective

foreshortening based on the distance from the eye to the origin point of the object. Since all

points in the 2D object lie at the same depth from the eye, the f/z scale factor can be applied

uniformly to all points in the object. And finally, a scale factor will need to be applied

which takes the object from world units back to pixel units for display based on the view

and display parameters specified in the script.

Since only one point in the object actually needs to be transformed to determine all

three scale factors, as well as the position, and since the compositing unit composites in

pixels to produce an image which is ready for display, all three factors are multiplied

together to get one overall scale factor which will be applied to all the data in the 2D object.

And from the transformations performed on the origin of the object, a "paste point" is

calculated in pixels which indicates to the compositing unit where the upper left corner of

the scaled 2D data is to be placed in the final image. The calculation of the scale factors,

and the transformation of the single point are all performed in floating point arithmetic in

software. The scaling of the 2D data is implemented in hardware.

There are several possible methods of implementing a scaling pipeline in the

Cheops hardware. One method, which is not implemented, again involves the use of the

remap/composite unit. In this method, a contracting vector field is created which would

cause the appropriate scaling on the object, and then the data is appropriately prefiltered and

passed through the remap processor along with the contracting field to obtain the correctly

scaled output. This possibility was not chosen because creating the contracting vectors

each time is a slow process, and creating the vector fields ahead of time and storing them

requires a great deal of memory.



The 2D scaling pipeline is instead implemented using scaling filters and the built-in

capability of the Cheops flood controllers to replicate, zero-pad, and decimate streams of

data by integral factors up to sixteen. This of course limits scaling of 2D objects to rational

factors whose numerators and denominators are each less than or equal to sixteen, but this

was deemed sufficient for this system. The Cheops filter unit and separable two-

dimensional filters are used in this pipeline, since the filter unit can perform one-

dimensional filters with a reasonable number of taps (up to sixteen at the full system clock

rate). The current implementation uses triangular filters, as this was deemed sufficient, but

gaussian filters are another easy-to-implement possibility. Using separable 2D filters

involves two passes through the filter unit with a transposition of the data in between

passes, so the complete 2D scaling pipeline consists of transposing the data, filtering it in

the y dimension, transposing it again, then filtering it in the x dimension. Since a transfer

through the filter unit involves two flood controllers in addition to the filter unit, the data

can be upsampled, filtered, and downsampled all in the same pass. Thus scaling occurs at

the same time as the filtering. The filter coefficients to be used are chosen appropriately

based on the maximum upsampling or downsampling rate, as described in [Oppenheim89]

and many other digital signal processing texts.

In 2D objects, up to five channels might need to be passed through this scaling

pipeline: three color channels, a z-buffer, and an alpha buffer. None of these channels

depends on any of the others, and so they are passed in to NORMAN as parallel

operations. The Cheops system does not have the necessary control signals nor does it

have enough flood controllers to perform all five scaling operations in parallel, but

NORMAN takes care of performing the operations when it can and parallelizing as much as

possible.

One large discrepancy in treating 2-1/12D objects identically to 2D objects comes in

the application of the perspective scaling. By definition, all points in a 2-1/2D object do not

lie at the same depth, and so while the perspective scale calculated may be correct for all
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points which lie in the same plane as the defined origin point, it will not be correct for the

other points in the object. It is therefore preferable to place 2-1/2D objects into the world in

such a way that they will not need to have perspective scaling applied to them. 2-1/2D

objects are generally obtained by pre-rendering 3D scenes with certain parameters or by

using special equipment such as Bove's range-finding camera [Bove89]. It is therefore

envisioned that 2-1/2D objects will be used primarily as backgrounds or sets or other large

non-moving items, and it will not pose a problem to position them such that perspective

scaling is not a factor.

3.2 Compositing Unit

The compositing unit is implemented in the Cheops system using the

remap/composite stream processor in z-buffer mode. In z-buffer mode, the remap unit

accepts a stream of data which consists of intensity and z values interleaved. A second

stream may also be included which contains the interleaved x and y coordinates which

correspond to the intensity and z in the first stream. If the second stream is not present, the

z-buffer assumes that the data is being presented in 2D raster order, and expects an x,y

coordinate pair which specifies the upper left corner of the 2D pixel array which is to be

composited into the image. As might be expected, 2D and 2-1/2D objects are presented to

the z-buffer in raster order, and the x,y offset coordinates are taken from the "paste point"

that was calculated in the transformation unit. The z component of the paste point is a

constant offset that is added to every z value in the 2D object. Since 3D object data consists

of a collection of points in any order with specific x, y, and z components, the output from

the 3D transformation unit is rearranged to form an xy stream and an intensity-z stream

which are then presented to the z-buffer for compositing. The intensity-z stream input

allows for the interleaving of only one intensity channel with the z channel, therefore
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compositing color objects consists of making three separate transfers, interleaving each

color component separately with the same z values.

3.3 Error Adders

One of the modes of the Cheops filter unit is a stream addition mode, and it is this

mode which is used to implement the error addition units. Errors are expected to be

decoded as explicit 2D arrays of values which can be added to individual objects, or more

commonly to complete frames. It is not yet clear how error signals might be used in

conjunction with 3D objects, but due to the simplicity of its implementation, that unit is

implemented and left as a hook for future use.

Combining the transformation units, the compositing unit, and the error addition

units creates the low-level hardware and software base that can accept and process object

data based on the verbose description which will be provided by the script interpreter. This

interpreter is described in the sections that follow. For more specific descriptions of the

specifics of the implementation of the data processing pipeline, see Appendix C.



Chapter 4

The Script Interpreter

A low-level hardware and software system now exists which is ready to accept,

transform, and composite together data of many differing representations. The level on top

of this one must of course describe the data that is to be fed into the rendering system. And

despite the fact that the representation of the sequence is preferably time-based so as to

achieve frame-rate independence, any display device on which the final sequence is to be

presented will have an inherent frame rate and so the basic unit of any synthetic sequence is

of necessity a single frame. It is therefore important to make the conversion from the time-

based representation of the script to the frame-based requirements of the output.

4.1 Time-based to Frame-based

In the Cheops system each output card has associated with it an output card

descriptor which contains a field specifying the frame rate of that particular card in frames

per second. In addition to this, the NORMAN resource management daemon keeps a

frame counter for each output module in the system. The combination of these two

numbers creates a real-time clock against which times in the script may be compared. The

system maintains four global variables to assist with this: display-time, seq-time,



displayperiod, and sampleperiod. Display_time tracks the time that has elapsed

since the sequence started playing, and seq-t ime keeps track of what time within the script

is currently being displayed. These two numbers will differ if the sequence is repeating or

playing palindromically; the seqLt ime will always be a value that falls within the limits

defined in the script, whereas the di splay-t ime is monotonically increasing.

Display_t ime is compared with the current time on the output module to determine when

the next frame should be displayed. After each frame is displayed, display-time and

seq-time are incremented by display-period and sample-period, respectively.

Display-period and sample-period are by default set to the inverse of the frame rate of

the output module to which the sequence will be displayed, but are changeable by the user.

As already described, display-period controls the frame rate of the output sequence.

Sampleperiod can be thought of as the "shutter speed" of the virtual camera -- it defines

how much time elapses in the world model in between displayed frames. When

display-period and sample-period are equal, the effect is that of a sequence filmed in

real time with a camera of the defined shutter speed. If sample-period is less than

displayperiod, however, there is a slow-motion effect, and if sampleperiod is

greater than display-period then the output sequence appears to be running in a "fast-

forward" mode.

4.2 Describing a Single Frame

The frame is a snapshot of the world (real or synthetic) at a particular time,

capturing actors and background at that moment, based on the parameters of the camera

itself. A frame can therefore be described entirely by describing the state of each of the

actors (the background is just a special case of an actor) along with the viewing parameters,

which define the transformations to which the actors will be subjected. In addition, if the



final destination of the frame is a display device, as is the case in this system, the physical

window parameters must also be defined. In the most general case, all three of these items

-- actors, view parameters, display parameters -- can change each frame. Consider a scene

in which an actor walks across a set, the camera pans to follow and zooms in on the actor

while at the same time the display window shrinks or grows, for example. Thus a

complete frame description must include a description of the view parameters, a description

of each of the actors that are presently in the world, and a description of the physical

display to which the frame will be output.

4.2.1 View Parameters

The view parameters define how much of the world will be displayed on the final

display window as well as the transformations to which the objects being viewed will be

subjected as they are projected from a three-dimensional world model onto a two-

dimensional display. The projections most commonly used in computer graphics are called

planar geometric projections. These projections are defined by specifying a point called a

center of projection from which straight rays called projectors are extended to every point

on the surface of the object being projected which is visible from the center of projection.

These projectors intersect a plane called the projection plane, and it is the collection of

intersection points on the projection plane which are called the projection of an object.

[Foley90] describes the two basic families -- perspective and parallel -- into which planar

geometric projections can be divided. In parallel projections, the center of projection is

infinitely distant from the plane of projection and so the projectors are parallel, whereas in

perspective projections the center of projection is a finite distance from the projection plane.

The non-parallel projectors in perspective projections lead to a phenomenon known as

perspective foreshortening. Figure 4-1 shows a typical perspective projection. Note that

line B will appear to be shorter than line A in the projection even though the two lines are

the same height, because line B is farther away from the center of projection than line A.
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Figure 4-1: A typical perspective projection illustrating the effect of perspective
foreshortening. A' and B' are the projected lengths of lines A and B, respectively.

The visual effect of a perspective projection is similar to that of the human eye as

well as to that of photographic systems. As the desired result of this system is to simulate a

sequence that was filmed by a camera, only perspective projections will be discussed in the

paragraphs that follow even though it was explained in section 3.1.1 that perspective

foreshortening is not currently implemented for 3D objects.

To specify an arbitrary 3D view requires not only a projection but also a 3D view

volume which defines the portion of the world that will be seen in the final output. As

explained previously, a projection is described by a point (center of projection) and a

projection plane, also called a view plane. There are many different ways of specifying a

plane, and the view plane is typically defined by a point on the plane called the view

reference point (VRP), and a normal to the plane called the view plane normal (VPN). An

additional vector, the view up vector (VUP), fixes the orientation of the view. If put in

terms of a virtual camera, the vector from the center of projection to the VRP can be said to

specify the pan and tilt of the camera, while the VUP specifies the roll.
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Figure 4-2: Points and vectors defining a typical 3D view. All points in the world
which fall within the pyramid created by the four rays extending from the Center of
Projection will be seen in the final projection.

Next, since planes have infinite extent and most output devices do not, a window

on the view plane needs to be defined. The VRP, VPN, and VUP together specify a new

coordinate system called the view-reference coordinates (VRC) with the VRP as the origin

and an axis along the VPN called the n-axis. The parallel projection of VUP onto the view

plane specifies the v-axis, and the u-axis is then defined such that the u, v, and n-axes form

a right-handed coordinate system. The window is specified in terms of the VRC by giving

minimum and maximum u and v coordinates. The view volume is then defined by

extending an infinite ray from the center of projection through each of the four comers of

the window to form a pyramid. Figure 4-2 shows a typical 3D view. In many computer

graphics view specifications, a front and back clipping plane are also defined. However,

since there is no easy method in hardware to cull points that would ordinarily be clipped in

software by a rendering system and since the fact that the hardware z-buffer on the spatial



remapping card in the Cheops system is limited to 16 bits imposes inherent clipping planes,

there is no need for them to be specified in this representation.

There are many ways of thinking about the view specification more intuitively. One

possibility is to consider the window on the view plane to be a sheet of glass that has the

same dimensions in world units as the window itself. Any object that falls on the view

plane will not be affected at all by perspective foreshortening. This is useful in cases where

the actual dimensions of the digitized objects are not known and only the pixel dimensions

after sampling are known because the origin point of the background can be placed at the

VRP so no scaling will occur, and then the positions of all other objects to be composited

into the scene can be calculated using the formula for perspective foreshortening to achieve

the proper proportions in the final output. A representation which more closely models the

real world would be to consider the view window as the virtual film plane in a virtual

photographic system and give it corresponding dimensions such as 24mm x 36mm. In this

case, the eye-distance (the center of projection is often called the eye location) from the

view plane is equivalent to focal length. The resultant projection is then multiplied by

aspect ratios in each dimension to get the final size used for output or display.

The C declaration of the view structure is shown in figure 4-3. This structure is

used by the script interpreter to define the various view parameters. Unless otherwise

specified, values in the view structure are floating point because of the ease with which

floating point numbers allow modeling of a three-dimensional world space. [Foley90]

describes in detail how to go from the view parameters to the 4x4 matrix that can be used to

project every point in the world into the 2D display coordinates, so that process is not

described here. The fields used to specify 3D views in the view structure are:

- state - the CurrState structure and its associated fields are described in section

4.3.

* view-re fpoint - 3D specification of the view reference point in world

coordinates.



typedef struct ViewStruct {
CurrState state;
/* Specifies VRP */
Point3 viewref_point;
Vector3 view plane_normal;
Vector3 viewupvector;

/* Eye */
float eyedistance;

/* The window */
float u_min;
float v_min;
float u-max;
float vmax;
/* aspect ratios between window and viewport
Point3 aspect-ratio;
/* Matrices */
Matrix4 vieworientationmatrix;
Matrix4 view-mappingamatrix;
Matrix4 viewtotalnappingmatrix;

} View;

Figure 4-3: The C declaration of the View structure.

- view-plane-normal - normalized 3D vector specifying the view plane normal

in world coordinates.

- view-upvector - normalized 3D vector giving the up orientation vector for this

view in world coordinates.

- eyedistance - distance of the eye (center of projection) from the projection

plane. In this implementation, the eye is assumed to be located eye-distance

units away from the view reference point in the direction of the view plane

normal.

- u_min, v min, u-max, v-max - four points specifying the boundaries of the

viewport (visible portion of the world) on the projection plane. If the projector

from the eye to a point in the world does not lie within these boundaries, then

that point will not be seen from this view.

- aspectratio - three values specifying the aspect ratio in the x, y, and z

directions. The aspect ratio is the conversion factor that takes a point from world

coordinates to integral pixel coordinates. In the x and y dimensions, these



numbers are based on the ratio of the screen dimensions to the viewport

dimensions. In the z dimension, it is not yet entirely clear what is the best

method of defining the aspect ratio. In the current implementation, the z aspect

ratio merely counteracts the pixel-to-world conversion factor which is applied

when the raw data is taken into world coordinates. Although the aspect ratios

depend on the display parameters, they are included in the view structure because

the final result of the rendering process will be a two-dimensional pixel array,

regardless of whether that pixel array is displayed to a screen or merely saved to

file for later viewing.

. vieworientationmatrix, viewjmapping-matrix - steps along the way to

creation of the view total-mapping-matrix.

- viewtotalmappingmatrix - the 4x4 matrix created from view parameters.

For 3D objects, this matrix is composed with the individual transform matrix for

each actor to give the final matrix with which each point in the actor will be

multiplied. For 2D and 2-1/2D objects this matrix is used to transform the origin

point of the actor which then determines the scale to be applied to the actor due to

perspective foreshortening.

4.2.2 Actors

Actors are instances of objects. Thus it is possible to use the same object data more

than once in a single frame by having several actors which are instances of the same object

and placing them at different locations in the world. One cow or a whole herd of cows

could be placed in a meadow, or Michael Jordan could be made to play basketball against

himself with only one object but several actors.

The primary parameters which are used to place an actor in the world are position of

the actor, rotation of the actor around its own origin, and which view of the object is being

presented if there is more than one view included in the object data. Depending on whether



typedef struct Actor {
CurrState state;
int interp;
Object *obj;
int obj_view;
long scale; /* 2, 2 1/2 D objects */
float pos[3];
float rot[3];
int cacheline;
Matrix4 transformmatrix;
int pastepoint [3];

} Actor;

Figure 4-4: C declaration of the Actor struct.

the object of which an actor is an instance is two-dimensional (including 2-1/2D) or three-

dimensional, these parameters may be used in different ways. The Actor structure which

is used to represent an actor is shown in figure 4-4. The fields are used as follows:

- state - the CurrState structure and its associated fields are described in section

4.3.

* obj - pointer to the object description of which this actor is an instance.

* obj_view - which view of the object is being shown by this actor.

- scale - for 2D and 2-1/.2D objects only, the index into the array of structures

which contain the information about which scaling factors and filter taps are to be

used to obtain the calculated scale for this actor.

e pos - the three-dimensional position of this actor in world coordinates. For

three-dimensional objects, this information is not accessed directly, but is used in

combination with the rot field (described below) to create the transform matrix

for this actor, which is then composed with the view matrix to create the final

transformation matrix with which each point in the actor will be multiplied.

- rot - rotation (specified in degrees) of this actor around each of its three

principal axes (x, y, and z) relative to the its own origin. For three-dimensional

objects, this information is not accessed directly, but is used in combination with



the pos field (described above) to create the transform matrix for this actor,

which is then composed with the view matrix to create the final transformation

matrix with which each point in the actor will be multiplied. For 2D and 2-1/2D

objects, this rotation can be used to find a normal vector for the orientation of the

actor, which can then be used to decide which view of the object should be

shown.

- cacheline - not currently implemented. A hook should object caching be

added to the system to increase performance.

- trans f orm matrix - for 3D objects, the 4x4 transformation matrix created from

the pos and rot fields described above. NULL for 2D and 2-1/2D objects.

e pastepoint - for 2D and 2-1/2D objects only, the offset in pixels in each of the

three dimensions indicating where the upper left corner of the actor will be

composited into the frame.

4.2.3 Display Parameters

The display is the simplest of the frame elements and is described by a data

structure called a DispStruct. In this system, a display is defined by four parameters: the

x and y position of the upper left corner of the display window (offset from the upper left

corner of the screen), and the x and y dimensions of the window. All of these values are

integers, since they are all in terms of pixels. Figure 4-5 shows the C declaration of the

DispStruct. The CurrState structure will be described in section 4.3.2.

In truth, the display parameters could be considered (and in many implementations

of graphics systems are considered) part of the view parameters. Note, for example, that

the view parameters described in section 4.2.1 include aspect ratios, which are dependent

on the final display parameters. It was decided for this implementation, however, that

separate control of the display window and the view parameters is a desirable feature.

Another benefit of this separation is the reduction of the number of parameters kept track of



typedef struct DiSpStruct {
CurrState state;
int xpos;
int y-pos;
int xdim;
int ydim;

} DispStruct;

Figure 4-5: C declaration of DispStruct which defines display parameters.

by the view structure from seventeen to fourteen. Thus, to cause the display window to

change position on the screen it is not necessary to enter seventeen values into a script

command when fifteen or sixteen of them will not change.

4.3 Creating Sequences from Frames

Using the data structures described in section 4.2, it is possible to specify the view

and display parameters as well as the position, orientation, and view to be used for every

actor in a single frame. The next step is to put frames in order to make a video sequence.

Two different methods exist for creating the frame descriptor for each frame in the

sequence: create them all prior to play time or create the frame descriptor just prior to

processing the data for the frame in which it is needed. Both approaches have been tried in

this system.

4.3.1 Compiled Scripts

In the first implementation of this system, the decision was made to have the parser

also act as a compiler and create a frame descriptor for each frame that would be displayed

in the sequence prior to displaying any of the frames. The parser determined from the

script how long the sequence would be, and then based on the frame rate of the output

device created enough frame descriptors for a sequence of that length. The descriptors



were held in an array, and one by one were passed to the rendering and compositing

system at the correct time to create the desired output sequence. The main motivation

behind this decision was an attempt to minimize the number of calculations that would need

to be performed on frame descriptors during the actual playing of the sequence in order to

come closer to achieving real-time performance.

This compiler-like system did indeed work, particularly with sequences which

involved only one story line and no interactivity. Simple reconstruction of a predefined

video sequence lends itself easily to a representation which can be completely described and

calculated ahead of time. However, interactivity by definition requires some calculations

during the play time of the sequence and the ability to evaluate the state of certain

parameters on the fly and respond to them. Also, Cheops system hardware is designed

such that all transfers through the stream processors are handled by DMA controllers

leaving the main CPU free for other duties. Since all values in the first implementation

were precalculated, a great deal of CPU time was wasted in tight loops simply waiting for

data to be processed or output to screen that could easily have been used to precalculate the

parameters for the next frame descriptor or respond to user input. It was therefore decided

that it would be preferable for this system to assemble frame descriptors at display-time,

which would take advantage of previously wasted CPU cycles as well as give the system

the ability to respond to user input or the current state of the system allowing for the

implementation of interactivity and conditionals. In this second implementation, the script

is now represented as key instances of views, actors, and displays which have key times

associated with them, and algorithms are implemented for getting from one instance to

another.

4.3.2 Interpreted Scripts

The largest concern in moving to display-time creation of frame descriptors is that

real-time functionality might be lost with the number of calculations that must be performed



each frame to determine view, actor and display parameters. As described in section 4.2.1

a view is defined by the VRP, VPN, and VUP, each of which contains 3 floating point

values, as well as the window specification (4 values) and an eye distance for a total of 14

floating point values. Actors are specified by position, rotation, and view (6 floating point

and 1 integer value), and display parameters by position and dimensions (4 integer values).

In the case of views and 3D objects, the floating point values must be manipulated even

further to create transformation matrices. It is obvious that the script cannot be reparsed

before every frame to create a new frame descriptor, therefore an intermediate level must be

created which can be quickly evaluated to obtain the necessary values for the next frame,

but which also allows for user interaction and conditionals in the script.

The intermediate level needed is obtained through the creation of three additional

data structures: the preView, preActor, and preDisp. These structures are themselves

very straightforward, consisting of two substructures: the ParamStruct which is used to

represent different types of data which are evaluated to obtain the values used in the frame

descriptors, and the LLStruct which contains fields necessary to create doubly linked

lists of the "pre" structures for forward and backward traversing of the script.

As currently defined, the ParamStruct supports four different kinds of parameters

labeled as PARAMTYPECONST, PARAMTYPEPARAM, PARAMTYPEKNOB, and

PARAMTYPEFUNC. These four types refer to constants, other parameters, knob/user

inputs, and functions, respectively. The ParamStruct is set up generically to allow it to be

used for representing other types of data as well, should the need arise. Figure 4-6 shows

the C declaration of the ParamStruct. The fields are used in different ways depending on

the type of data the structure represents:

- inuse - not used at run-time. Used in scripts to define macros (see appendix A

for a description of a sample scripting language and sample script).

* ptype - parameter type, of the four so far defined.



typedef struct ParamStruct{
int inuse;
param-type ptype;
int pnum;
int (*func)(;
struct ParamStruct *args;
int changed;
float val;

} ParamStruct;

typedef struct LL {
struct LL *next;
struct LL *prev;
int interp;
float time;

} LLStruct;

Figure 4-6: C declarations of ParamStruct and LLStruct. These structures are used to link
individual instances of views, actors, and displays into a script.

- pnum - parameter number of the other parameter to which PARAMTYPEPARAM

refers; knob number for PARAMTYPEKNOB.

- func - pointer to the function which will be called if PARAMTYPEFUNC.

. args - array of arguments which will be passed into the function if

PARAMTYPEFUNC. The arguments themselves consist of ParamStructs, SO

that nested function calls and user input to the functions are supported.

* changed - set to true if the value to which this parameter evaluates has changed

since the last time it was evaluated.

. val - floating point value to which this parameter evaluates. This field holds the

constant value if PARAMTYPECONST.

The LLStruct declaration is also shown in figure 4-6. It is what allows the

connection of the "pre" structures into doubly linked lists to form a coherent script and

describes how to get from one instance of a view, actor, or display to the next. It contains

the following fields:



Snext, prev - standard doubly-linked list pointers to the next and previous

elements in the list.

- interp - specifies how the data represented by this instance of a view, actor, or

display is to be treated until the next instance in the list. Three possible actions

are currently supported:

i) NOINTERP - no interpolation is performed between this instance and

the next instance. The data is used exactly as it is represented in the

current instance.

ii) INTERP - the data actually used is interpolated between the current

instance and the next instance in the list. Currently linear interpolation

is used in all cases, except possibly in the object view field of the actor

structure. See appendix A for the reasoning behind this exception as

well as how to use it.

iii) REMOVE - used only for actors. Indicates that the actor is not displayed

in any frame until a later instance changes this status. Used primarily

as a place holder if an actor is to make several appearances over the

course of a script and not be displayed in between appearances.

- time - the time at which this instance of a view, actor, or display takes effect.

- changeable - a boolean which indicates whether or not this instance of a view,

actor, or display is capable of changing. This is so far simplistically defined in

that an instance is said to be not changeable if the "pre" structure for that instance

represents only constants. Other parameters, user inputs (i.e. knobs), and

functions are assumed to be able to change. A more robust system might check

whether the other parameters themselves represented constants, or whether all

the arguments to a function were constant and thus not changeable as well.



The doubly linked lists of "pre" structures correspond one-to-one with the view,

Actor, and DispStruct structures used in the current frame descriptor. This means that

there is one list describing the displays, one list for the views (a single-camera model is

assumed), and one list for each of the actors that will be used. At the time the frame

descriptor is compiled, each of the ParamStruct s in the correct instance from each of these

lists is evaluated and the resulting values are placed into the corresponding frame descriptor

structures. Evaluation can be as simple as immediately returning a value in the case of a

constant or another parameter, or it can involve a function call, or even polling an input

device.

In order not to have to start at the beginning of each doubly linked list and locate the

correct instance every frame, each View, Actor, and DispStruct Structure contains a

CurrState structure within it. The currstate structure contains a pointer to the instance

of the "pre" structure that is currently relevant, as well as a pointer to the next instance and

the time at which that instance will take effect. The next pointer is also used for quick

access to data if interpolation is to be performed. Along with these three fields the

CurrState also contains other fields which are used to determine whether or not the view,

actor, or display needs to be updated, thus gaining some speed by avoiding unnecessary

calculations.

This second implementation does not preclude describing sequences in a frame-by-

frame fashion as was done in the first implementation. Each frame could be considered a

key instance with its associated complement of "pre" structures. A script this verbose

might be expected from a scene analysis system, for example, or an automatic script

generator. As long as the script is described in this linked-list format, however, it makes

absolutely no difference what kind of system created the script. For a sample scripting

language and some scripts written using it, see Appendix A.



Chapter 5

Example Applications for a
Structured Video Decoder

Various applications have now been written using the structured video decoding

system described in the previous chapters in conjunction with the scripting language

described in Appendix A. Obvious first applications included resizing of a standard video

sequence based on user input as well as allowing a user to explore a simple 2-1/2D or 3D

space by manipulating a 2D actor.

A more recent application which is just beginning to be explored is the concept of

"contextual resizing." In contextual resizing, the output sequence that is produced by the

structured video decoder can be made to change based on the parameters of display to

which the output is being sent, such as size or aspect ratio. If the display window is large

or has a wide aspect ratio, for example, then perhaps the presentation can be almost

theatrical in that the whole set can be seen and the viewpoint changes only rarely. On a

smaller display window, perhaps the viewpoint moves to follow the main action in the

scene or cuts to a close-up of the actor. The parameter-based changes in presentation are

completely specified in the scipt, giving the director the control necessary to compose the

sequence differently for display on a movie theater screen or a television screen, for

example. Beyond differing viewpoints, however, changes in display could engender

completely different story lines, such as a scene taking place set against a panoramic



backdrop (e.g. the rim of the Grand Canyon) on a large display, or in a much tighter space

(e.g. a narrow forest path) on a smaller display. A large number of creative possibilities

which were formerly not available for storytelling open up in a structured video

environment.

Figure 5-1 shows one specific example which has been implemented of contextual

resizing. In the sequence represented, an actress starts at the right side of the scene, walks

across a room in a synthetic art gallery and out the door on the left side of the room,

passing behind one statue and in front of another along the way. The gallery is prerendered

into a 2-1/2D object, and the actress is represented as a series of views of a 2D object

which simulate a walking motion. When the sequence is displayed in a large window, the

viewpoint is stationary and remains centered on the entire room as the actress walks across

the screen. In a smaller window, the view cuts in closer to the actress and tracks her as she

walks amidst the statues and paintings of the gallery. Both sequences shown in the figure

occur in the same amount of time. For a complete description of how this example was

implemented including the script used, see Appendix A.

Other possible applications that have not yet been attempted on this system are to

create stories in which the user determines the storyline. At certain key times throughout

the script, the next set of actions portrayed by the sequence could depend on user input. A

structured video system is also ideal for implementing Dolan's synthetic transition shot

[Dolan94] in which a model of a bobsled and bobsled track are used in conjunction with a

virtual camera to create a smooth transition in between two real camera shots that might

otherwise cause disorientation to the viewer.



Figure 5-1: Screen dump of selected frames output by the contextual resizing application
at two different window sizes.
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Chapter 6

Results, Ideas for Future Work,
Conclusion

The structured video decoding system described in this thesis has been implemented

on the Cheops system and to varying degrees has been functioning regularly for several

months. The low-level data processing pipeline hardware and software have been running

basically unchanged for the past seven months while the script interpreter has undergone

various revisions. As stated in section 1.3, decompression of the data as shown in figure

1-1 has not been implemented and remains a task for the future.

Timing tests performed on the system indicate that the hardware/software

combination on a Cheops system configured with only one filter card and one spatial

remapping card (so that none of the data transfers can be performed in parallel) is capable

of compositing a single 2D color actor of about 400x200 pixels into a 512x512 pixel 2-

1/2D color background at a rate of between six and seven frames per second. Adding two

more actors to the scene slowed the system to just over three frames per second.

Rendering and display of a color 3D object consisting of approximately 250,000 points can

be performed at almost three frames per second. Adding more filtering and remapping

stream processors to the Cheops configuration will certainly increase the frame rate as

operations can then be performed in parallel. If the system configurability is limited to the

three stream processor cards that can be placed on one P2 processor module, it appears that



the best configuration will be to have one filter card and two remap cards, as the remap card

accepts data at a significantly slower clock rate than the filter card. This configuration has

not been verified with actual tests as of yet, however.

A pleasant surprise came when testing the system after changing the script

interpreter to create the frame descriptors at display time instead of ahead of time. Rather

than a decrease in performance which was expected due to the number of floating point

operations which are now being performed before each frame is processed, no change in

performance occurred. Closer inspection of the system revealed that the time it takes for

the Cheops system DMA controllers to transfer the composited frame to the output card is

more than sufficient for the CPU to perform all necessary calculations to prepare the frame

descriptor for the next frame, even if the operations are primarily in floating point

arithmetic, as is currently the case. This becomes untrue if the display window happens to

be very small (i.e. less than 128x128), but even in these cases performance degradation is

minimal.

Additionally, the introduction of the scripting language and the structured video

environment has considerably eased the task of using the Cheops system to test algorithms

and create demonstration applications. Once the scripting language was debugged, it took

the author approximately fifteen minutes to implement the contextual resizing application

described in Chapter 5 and Appendix A. One half of the demonstration applications which

are currently used on the Cheops system are also trivially implementable using the newly

created environment with the caveat that the generality of the structured video system leads

to slightly slower performance than can be achieved by creating the applications as

optimized stand-alone demonstrations.

The system as it currently stands is far from perfect, however. One thing the

system has definitely accomplished is to show some of the strengths and weaknesses of the

Cheops system itself in terms of its use as a real-time video decoder. For example, a single

filter card is capable of performing 4x4 matrix multiplications on 4x1 vectors at the rate of



6.7 million 4-vectors per second. But the current implementation of the hardware z-buffer

and all of the operations that must be performed on the 3D data to create acceptable input

streams to the z-buffer cause the overall system to be able to render and display only 1.1

million points per second. A color 3D object conisting of 250,000 points will require that

750,000 points be rendered which makes the system very slow as a 3D rendering unit. It

is therefore evident that the hardware which will be used in future implementations of this

system will have to undergo some revision. The hardware, however, is not immediately

changeable.

On the software and system configuration side optimization can also be done to

increase performance and flexibility. The current implementation of conditionals in the

script representation and more particularly in the scripting language is not as flexible as

might be desired. It is not easy at present, for example, to specify that the effects of a user

input should result in two completely separate future courses for the storyline.

The possible output frame rate of the system can also be significantly increased by

increasing the concurrency of operations on the data. As was mentioned previously,

adding more stream processors to the system should dramatically increase the output

possibilities. Ideally, in order to achieve maximum parallelism, it would be nice to have a

configuration which includes three filter cards and three remap cards, so that all three

channels of color objects can always be processed in parallel. This is particularly relevant

to the transformation of 2D objects which may have up to five channels which theoretically

can be processed in parallel. In the current implementation of the data processing pipeline,

objects are transformed and then composited one by one because the amount of local

memory on a P2 processor board limits the number and size of temporary work buffers

which can be allocated and used. Both filter and remapping cards spend a significant

amount of time idle while waiting for other processing to be performed on the data. One

possible solution to this bottleneck would be to implement a system which includes two P2

processor modules, as shown in Figure 6-1. Each of the P2 modules could then be made
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Figure 6-1: Implementation of the data processing pipeline consisting of two P2
processor modules. P2 #1 is configured with three filter processors, and P2 #2 with three

remap/composite processors.

to correspond to one of the main functional units in the data processing pipeline and each

could have three stream processor cards to perform operations in parallel. At present, the

NORMAN resource management system does not support communication in between P2

modules. Along with splitting the processing in between two boards which increases the

availability of both stream processors and local memory, the transformation unit and

compositing unit could each be made into servers which buffer up requests for

transforming and compositing objects and then perform them when possible so that the

CPU can have more time to spend calculating complex frame descriptors instead of waiting

in tight loops to control data flow.

Performance considerations aside, other implementations and/or uses for this

system would also be interesting to explore. One possibility would be to make a system

more similar to the animation system described in [Reynolds82] in which the actors are

themselves pieces of code or objects which are not evaluated but are rather "invoked."

Each actor would know how to evaluate itself and do the appropriate thing based on system

parameters as well as the predefined script.

Interesting work has also been done recently with intelligent camera control

[Drucker94] and 3D scene pre-visualization [Higgins94]. It would certainly be possible to

create an intermediate application which could take a description output from Higgins'

system, for example, and create a script which could be passed in to this structured video

environment. Then, given a good model of the set (such as a detailed CAD/CAM model)

as well as the necessary digitized actors, it would be possible to create a completely



synthetic movie from previsualization through output without ever even building the set or

filming the actors directly performing the script.

This is not to say that creating such a system is as easy as it sounds. Research has

just begun to scratch the surface of previsualization as well as structured video description

and reconstruction. It can already be seen that the script representation chosen in this

implementation will be inadequate to fully represent the broad new options for flexibility

and variability possible in structured video environments. Many questions still need to be

looked into. How do we describe this variability in a script? How should data be thought

of and prepared when a structured video representation is the known final objective?

Recent experience at a video shoot with this final purpose indicates that it is perhaps not as

straightforward as simply filming a script.

On the whole, though, the outlook for the future of real-time structured video

decoding and display is very promising. Scene segmentation and modelling of real-world

objects (especially people) is far from perfect but continues to be an active area of research.

Investigations into the requirements for real-time structured sequence synthesis are just

beginning. The system implemented in this thesis is a useful start, but greater performance

and flexibility can be envisioned and will even be required by future storytellers and

sequence creators. Future refinements in both hardware and in algorithms will make

structured video decoders very useful tools both technically and creatively.
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Appendix A

A Sample Scripting Language

Seeing as how such a large part of the structured video decoder functionality is

determined by the frame descriptor that is created by the script interpreter, and also given

how difficult and tedious it is to correctly initialize the hundreds of structures that will be

required by any script of a decent length manually, it seemed not only appropriate but

necessary to create a simple scripting language to test the functionality of the structured

video decoder implemented in this thesis. The scripting language was never the focus of

this thesis, however, and so the language here presented is doubtless incomplete. It is

meant to be easily expandable, though, and hopefully gives a good start for the structured

video environment.

The first section of this appendix presents the scripting language as it has been

developed so far, describing each of the supported commands in detail. Subsequent

sections show sample scripts using the current scripting language, then describe how to

add a new command to the script as well as the required format for functions called in the

script.



A. 1 Currently Supported Script Commands

The scripting language presented here resembles a simple computer graphics

animation language. The supported commands can be broken down into five basic groups:

general sequence control, user input and macros, object control, view parameter control,

and display window control. In general, commands which begin with "SET_" or

"PLACE_ involve no interpolation, and commands which start with "CHANGE_" or

"MOVE_" involve interpolation from the previous instance of the actor, view, or display

being changed or moved. In the following presentation, portions of commands which are

optional are enclosed in square brackets ("[]"). Note also that the scripting language is not

case sensitive as far as the commands are concerned, but for clarity all fixed portions of

each command are capitalized.

A. 1.1 Sequence Control Commands

The default behavior of a script is to run once until the last instance of a view, actor,

or display is reached and then quit. Both the display period and sample period default to

the inverse of the frame rate of the destination display device in an attempt to display data as

fast as is allowable. The following commands can alter the default behavior. All are

optional.

RUNTIME <sequence length in seconds>

Defines the running time of the sequence. This command is not required nor is it

necessarily heeded. The actual running time of the sequence is actually the greater

of the time specified by the runtime command and the maximum key time specified

for any view, actor, or display instance in the script.



DISPLAYPERIOD <display period in seconds>

Defines the display period used by the decoder. Internally this number is actually

converted to a frame count based on the frame rate of the destination display device

and used as the number of frames on the display device which are allowed to pass

before new data is displayed.

SAMPLEPERIOD <sample period in seconds>

Sets the sample period which is used as described in section 4.1.

REPEATING

Indicates that the sequence should be played repeatedly. When the script interpreter

reaches the end of the script, it begins again at time 0.

PALINDROMIC

The sequence will be played palindromically.

A. 1.2 User Input and Macros:

Currently knobs are the only supported input device, this is easily changeable in the

future as other input devices such as mice become available on the Cheops system. A

certain number of parameters are made available to use as macros. These are labeled

"param0" through "paramN", where N is the defined maximum number allowed. The

parameters are just an array of ParamStruct s as defined in section 4.3, and thus can be

made to be constants, refer to other parameters, poll input devices, or evaluate functions.

The parameters defined by the user are updated before every frame descriptor is created.

By default the input devices the user acquires are also polled before the creation of every

frame descriptor, but the device polling rate is user controllable. An input device should be



acquired as a param before it is used, and should only be referred to through that

parameter.

ACQUIREKNOB <knob number> <knob type> AS PARAM <param

number>

Acquire the given knob (supported numbers are 0 through 7) as the desired

parameter. Knob types are defined by the Cheops knob interface library and can

currently be one of three types. Knobs that require defining parameters include

them in parentheses:

* linear(<min>, <max>, <gain>, <bias>) -- The value returned by the knob

is given by the equation: knobvalue*gain + bias, and clipped to

be within the defined min and max values.

- exponential(<min>, <max>, <base>, <gain>, <bias>) -- The value

returned by the knob is given by the function: pow (base,

knobvalue*gain + bias), and clipped to be within the defined min

and max values.

* boolean -- This knob type requires no parameters. The value returned by

the knob is either 0 or 1.

example: ACQUIREKNOB 0 linear(0, 360, 1.5, 0) AS PARAM 3

acquires knob 0 as a linear knob running from 0 to 360 with a gain of 1.5 and a

bias of 0, assuming that knob 0 has not been acquired earlier or by another process

and that parameter 3 has not been previously defined to some other value.

DEFINEPARAM <param number> <parameter definition>

Defines a parameter as a macro. Parameters can be defined to be constant numbers,

other parameters, or function calls.



examples: DEFINEPARAM 0 3.14159

DEFINEPARAM 1 PARAMO

DEFINEPARAM 2 MIN(PARAMO, 10.3)

SETPARAM <param number> <value>

Sets the value of a parameter. Only constant parameters and parameters which refer

to input devices can be set with this command. This command is primarily used to

set a previously acquired knob to a desired initial value.

KNOBREADPERIOD <period in seconds>

Sets the input device polling period. Input devices (knobs so far) are polled every

knob read period and the values of acquired devices are stored in an array.

Parameters which access input device values actually read the values out of this

array and do not poll the input device directly. If knobread-period is not set, the

input devices will be polled before the creation of every frame descriptor.

A.1.3 Defining and Controlling Actors

This set of commands allows for the loading of object data and defining actors to be

instances of those objects. Commands adding instances of actors do not need to be placed

in the script in ascending order of their key times. However, an actor must be defined by

either LOADOBJECT or REUSEOBJECT before it can be referred to anywhere else in

the script. Backgrounds are just large, immovable actors and so the same commands are

used to refer to them.

Several defaults apply to actors. If position is not specified, it defaults to the world

origin (0, 0, 0). Rotation defaults to (0, 0, 0) as well. Likewise, if view or time are not

specified, they also default to 0. Object filenames and actor names are case sensitive and

must be typed exactly the same throughout the script.



In PLACEOBJECT and MOVEOBJECT, position, rotation and object view

arguments are parsed as ParamStructs and so can be constants, parameters, or function

calls. Times are parsed as constant numbers in the current implementation, although there

is no particular reason that they also are not parsed as ParamStructs. Position and rotation

arguments are required to be 3-vectors. If one value of the triple is specified, then the other

two must also be, even if they are 0.

LOADOBJECT "<filename>" AS <actor name>

Loads object data from the given filename (which must be enclosed in quotes) and

creates an actor with the given actor name as an instance of that object. Files are

accessed in the usual manner for datfiles (see Appendix B for the object file format)

and so submatrixing can be included in the filename.

example: LOADOBJECT "museum[d 0 0+480 0+512] " AS museum

loads the submatrixed data from the datfile museum and creates an actor called

"museum" as an instance of that object data.

APPENDOBJECT "<filename>" TO <actor name>

Appends data from the specified file to the object of which actor name is an instance

(this is to avoid having to type out very long filenames again). The data in the file

being appended must have the same dimensions (whether originally or by

submatrixing) as the object to which the data is being appended and must also be of

the same type (2D, 2-1/2D, or 3D). This can be useful when trying to assemble a

series of views of an object into a coherent action, such as walking and turning,

which use raw data from different files. All actors which are instances of the same

object data will also see all data which is appended into an object.



REUSEOBJECT "<defined actor name>" AS <new actor name>

Creates an actor with the new name which is an instance of the same object as the

actor with the already-defined name (again, to avoid retyping filenames). In this

manner, the data does not have to be reloaded for the new actor. The two actors

access the same data, but can access it with completely different parameters, so that

the actors can be performing entirely separate actions.

PLACEACTOR <actor name> AT [pos=(<x>,<y>,<z>)]

[rot=(<x>,<y>,<z>)] [view= <object view>] [AT time= <time>]

Places the specified view of the named actor at the specified point with the given

orientation at the given key time. If no arguments are given, they default to the

values described at the beginning of the section on actor commands. When an actor

is placed, no interpolation from any previous instance of the actor is performed.

Also, if the actor was not being displayed previously, this command turns the actor

on for display until it is removed again (see below).

MOVEACTOR <actor name> TO [pos=(<x>,<y>,<z>)]

[rot=(<x>,<y>,<z>)] [view= <object view>] [AT time= <time>]

Moves the actor to the specified position, orientation, and view at the specified

time. Linear interpolation is used from the immediately preceding instance of the

actor in the script, if one exists. The one possible exception to the linear

interpolation comes in the determination of the object view. It is very likely that

some objects will have multiple views which form a sequence simulating an action

such as walking, which should be played as a sequence and not necessarily

interpolated between. Thus, if the destination view in the MOVEACTOR

command is set to be greater than or equal to the number of views the object

contains, the script interpreter will cycle through the object views in ascending



order to give the appearance of the desired action. Likewise, if the destination view

is set to be less than 0, the script interpreter will cycle through the object views in

descending order.

REMOVEACTOR <actor name> [AT time= <time>]

Indicates that the named actor is not to be displayed from the time specified until it

is turned on again by a PLACEACTOR or MOVEACTOR command. Actors are

by default "removed" until they are explicitly placed.

A.1.4 Defining and Controlling View Parameters

Views are defined by a large number of parameters. What these parameters are and

what they each define is explained in section 4.2.1. As with actors, all of the parameters

are completely optional, and all but the time are parsed as ParamStructs so they can be

constants, parameters (by which input devices are accessed), or function calls. The

defaults for each of the parameters is: VRP=(0, 0, 0), VPN=(O, 0, 1), VUP=(0, 1, 0),

VP= min(-1, -1) max(1, 1), eye_distance = 1, and time = 0.

SETVIEW TO [VRP=(<x>,<y>,<z>) ] [VPN=(<x>,<y>,<z>)]

[VUP=(<x>,<y>,<z>)] [VP= min(<umin>,<vmin>)

max(<umax>,<vmax>)] [ed = <eye-distance>] [AT time =

<time>]

Set the current view to the specified parameters at the given key time. The view is

not interpolated from any previous instance of the view which may have occurred in

the script.

CHANGEVIEW TO [VRP=(<x>,<y>,<z>)] [VPN=(<x>,<y>,<z>) ]

[VUP=(<x>,<y>,<z>)] [VP= min(<umin>,<vmin>)



max(<umax>,<vmax>)] [ed = <eye_distance>] [AT time =

<time>]

Interpolate from the previous instance of the view parameters in the script if they

exist to arrive at the specified view parameters at the given key time.

A. 1.5 Defining and Changing the Display Window

The only controllable aspects of the display window are its dimensions and the

position of its top left corner. As with actors and views, all parameters are optional and all

but time are parsed as ParamStructs. Defaults are: dims=(512, 512), pos=(-1,-i), time=O.

Negative values in either position axis (x or y) signify that the window is to be centered on

the screen along that axis.

SETDISPLAY TO [dims = (<xdim>,<ydim>)] [pos =

(<xpos>,<ypos>)] [AT time = <key time>]

Set the display parameters as defined at the given key time. No interpolation with

previous display parameters is performed.

CHANGEDISPLAY TO [dims (<xdim>,<ydim>)] [pos =

(<xpos>,<ypos>)] [AT time = <key time>]

Interpolate from the previous instance of the display parameters in the script (if they

exist) to arrive at the specified display parameters at the given key time.

A.1.6 Other Commands

Other commands which have not yet been fully implemented or tested deal largely

with using the decoder as a two-dimensional transform decoder such as would be used

with layers or MPEG-like sequences. These include:



ADDERROR <error object name> [TO <actor name>]

Error signals can easily be loaded as objects and assigned to a name, just as actors

are. This command specifies that an error adder is to be enabled. If an actor name

is specified, the error is assumed to be added to that actor after it has been

transformed and before it is composited. Otherwise, the error is assumed to apply

to the whole frame after compositing has occurred. Error signals are generally

created by encoders which already know what transformations will be applied to an

object, and so the error signal is expected to be "synchronized" with the data to

which it will be added in the sense that there will be an error signal for every frame

created by the script interpreter. Thus, an "AT <time>" extension does not seem

necessary for this command.

APPLYTRANSFORMATION <explicit transformation name>

[zoom = <zoom factor>] TO <actor name> [AT time = <time>]

As with errors, explicit vector field transformations can be loaded as objects and

given names. This command specifies that the named transformation should be

applied to the given actor. If the transformation consists of only one vector field, it

is applied to the actor every frame. If multiple vector fields comprise the

transformation (analogous to multiple object views), then they are applied in order.

If a time is specified, the transformation is applied to the actor starting at the

specified time. The optional zoom factor allows vectors to operate on blocks of

pixels such as would be the case with MPEG encoded sequences.

APPLYAFFINE <a b c d e f> TO <actor name> [AT time

<time>]

Applies a transformation to a 2D object similar to applying an explicit vector field.

In this case the affine parameters are used to generate the vector field of appropriate



dimensions which is then applied to the named actor, continuously or at the

specified time. The vector field is created according to the affine equeations:

x = ax + by + c,

y = dx + ey + f

FEEDBACK [<actor name>] [AT time = <time>]

This command enables a feedback path. If an actor name is specified, then that

specific actor is fed back to be used next frame, otherwise the entire composited

frame is fed back to the transformation unit. If a time is specified, then the

feedback is "one shot" and happens only at the specified time. If no time is

specified, then the feedback is assumed to be continuous. If feedback is not desired

every frame, a feedback period can be specified (see below).

FEEDBACKPERIOD <feedback period>

Specifies how often feedback should occur along the path which has been enabled

by the FEEDBACK command. Internally this is converted to a frame rate and

based on the frame counter.

A.2 A Simple Script: Contextual Resizing

Using the commands described in the previous sections, it is fairly straightforward

to design scripts. For example, a script which will cause an actor to walk across a

background while the viewpoint does not move can be straightforwardly written as:

# script to make an actress walk across a room
LOAD OBJECT "data/mtemp[d 0 0+480 0+512]" AS museum
LOADOBJECT "data/btmp90" AS audreywalk

DISPLAYPERIOD 0.2 # slow it down some...



PALINDROMIC

SET VIEW TO ed= 14.2 VP= min (-7.2, -7.2) max (7.2,
7.2) AT time= 0.

PLACEACTOR museum AT time= 0.

PLACEACTOR audrey_walk AT pos= (5.3, -1.2, -5.48)
view= 0 AT time= 0.

MOVEACTOR audreywalk TO pos= (-9.5, -1.2, -5.48)
view= 8 AT time= 5.6

In the script above, the first line exhibits how submatrixing can be used with the

object files. One data set of the file data/mtemp is cropped to 512x480 pixels and loaded as

an actor named "museum." As it happens, museum is a 2-1/2D object which was

prerendered from a 3D computer database and is a room in a virtual art gallery which will

be used as the background. The file data/btmp90 is loaded as an actor called

"audreywalk," which actually consists of eight 2D views of an actress that together form a

walking sequence. The display period is set to 0.2 seconds (5 frames per second) to keep

the sequence reasonably slow, and the sequence is set to be shown palindromically.

The SETVIEW command sets the view parameters, and they will not change

throughout the duration of the script. Since the display parameters are not mentioned at all

in the script, they become the default which is a 512x512 window centered on the screen.

The museum is simply placed at time 0. All position and rotation defaults are applied in

this case, which means that the origin of the musem is placed at (0, 0, 0) and there is no

additional rotation applied to the object. The placement of the origin to coincide with the

VRP of the view means that perspective foreshortening will not be applied to the museum,

which is the desired treatment of 2-1/2D objects.

Finally, the actor audrey-walk is placed at its initial location at time 0, and then told

that it will move to a second position at 5.6 seconds. Linear interpolation will be used to

go from the initial state to the final state, except that since the destination view is set to be



equal to the number of views in the object of which audrey-walk is an instance, the script

interpreter will actually cycle through all the views in the object in ascending order to create

the impression that the actor is indeed walking.

A slightly more complex script (but just barely) can be written to have the camera

track the actor and display the output on a smaller window:

# script to track an actor on a small window
LOADOBJECT "data/mtemp[d 0 0+480 0+512]" AS museum
LOADOBJECT "data/btmp90" AS audreywalk

DISPLAYPERIOD .2
PALINDROMIC

# make the window smaller
SETDISPLAY TO dims = (128, 128) AT time = 0.

SET VIEW TO ed= 14.2 VP= min (-1.8, -1.8) max (1.8,
1.8) VRP = (5, 0, 0) AT time= 0.

CHANGEVIEW TO ed= 14.2 VP= min (-1.8, -1.8) max
(1.8, 1.8) VRP = (-5.3, 0, 0) AT time= 4.

# set the background:
PLACEOBJECT museum AT time= 0.

PLACE_.OBJECT audreywalk AT pos= (5, -1.2, -5.48)
view= 0 AT time= 0.

MOVEOBJECT audrey_walk TO pos= (-9.5, -1.2, -5.48)
view= 8 AT time= 5.6

The differences between this script and the script presented previously consist of

changes in the display parameters and the view parameters only -- the actors are unaffected.

In this script, the window is set to 128x128 (but it remains centered, since it was not

explicitly set otherwise), and the initial view is centered on the audreywalk actor. The

parameters to the CHANGEVIEW command are calculated such that the walking actor

remains centered in the window. The view stops panning before the actor stops walking so



that it does not pan beyond the limits of the background. Once the left wall is reached (at

4.0 seconds), the view stops panning but the actor continues walking to the left and out the

door.

As a final example, the two previously described scripts can be combined, one

more intermediate size can be added along with knob control of window dimensions and

position to create the contextual resizing application which is described in chapter 5:

LOADOBJECT "data/mtemp[d 0 0+480 0+512]" AS museum
LOADOBJECT "data/btmp90" AS audreywalk

DISPLAYPERIOD .2
PALINDROMIC

#knob 0 is display size. xdim = ydim. Must be a

#multiple of 8 for Nile to work correctly.
ACQUIREKNOB 0 linear(64, 512, 8, 0) AS paramO

#start display at 512x512
SETPARAM 0 512.

#knob 2 is x position, must be even, so set gain=2
ACQUIREKNOB 2 linear(-2, 768, 2, 0) AS paraml

#negative initial value means centered
SETPARAM 1 -2.

#knob 3 is y position
ACQUIREKNOB 3 linear(-2, 512, 2, 0) AS param2

#center to begin with
SETPARAM 2 -2.

# set up a bunch of params to be used like macros:
DEFINEPARAM 3 split3(param0, 256, 128, -7.2, -3.6,

-1.8)
DEFINEPARAM 4 split3(param0, 256, 128, 7.2, 3.6,

1.8)
DEFINEPARAM 5 split3(param0, 256, 128, 0, 3.6, 5)

DEFINEPARAM 6 split3(param0, 256, 128, 0, 3.6,

3.6)
DEFINEPARAM 7 split3(param0, 256, 128, 0, -3.6,

-5.3)

#display size and position controlled by knobs:



SETDISPLAY TO dims = (paramo,param0) pos
(parami, param2) AT time = 0.

#ok, set the view to act appropriately based on
#display size
SETVIEW TO ed= 14.2 VP= min (param3, param3) max
(param4, param4) VRP = (param5, 0, 0) AT time= 0.

CHANGEVIEW TO ed= 14.2 VP= min (param3, param3)
max (param4, param4) VRP = (param6, 0, 0) AT time=
0.5

CHANGEVIEW TO ed= 14.2 VP= min (param3, param3)
max (param4, param4) VRP = (param7, 0, 0) AT time=
4.

#actors still do the same old thing...
PLACEACTOR museum AT time= 0.

PLACEACTOR audrey_walk AT pos= (5., -1.2, -5.48)
view= 0 AT time= 0.

MOVEACTOR audreywalk TO pos= (-9.5, -1.2, -5.48)
view= 8 AT time= 5.6

While this script looks a lot more complicated than the previous two, it really is not.

It does, however, show more of the functionality of the scripting language. For example,

knobs 0, 2, and 3 are acquired as linear knobs which will control display window

dimensions and position, and are assigned to parameters 0 through 2. Parameters 3

through 7 are set up as macros to reduce the typing that will need to be done later in the

script. The function split3 (curr-val, levell, level2, valO, vali, val2)

returns valO if currval is greater than level 1, val 1 if currval is greater than level2 but less

than level 1, and val2 if currval is less than or equal to level2.

The actors are still animated as they were before -- the museum is stationary and the

actor walks from left to right. The display is put under knob control. Only the view is

complicated as it has been defined to react in various ways based on different display

dimensions.



Figure 5-1 shows the output over time created by this script on two different-sized

display windows. In the larger window, the viewpoint is stationary and the actor walks

across the room, while in the smaller window the view pans to follow the actor and the

background can be seen to be passing by.

The scripting language has been very useful for defining scripts which test the

system as well as for creating more sophisticated scripts like the one just presented. It is

very likely, however, that additions to the script will need to be made in future as more

applications are attempted. Therefore, the next section describes how to add functionality

to the scripting language.

A.3 Adding New Functions to the Scripting
Language

As described in section 4.3.2, one of the supported parameter types is

PARAMTYPEFUNC so that functions can be implemented in the scripting language. At

the level of the scripting language, functions resemble C function calls -- the function name

cannot begin with a number, and all arguments to the function immediately follow the

function name (spaces are allowed) and are enclosed in parentheses and separated by

commas. No inherent functions exist in the scripting language, and so any function the

user wishes to have must be implemented and added as described in this section, no matter

how simple it may be.

Three separate arrays comprise the function call interface in the scripting language

created here, and to be supported a function must have an entry in each of the three. The

first is an array of supported function names, stored as strings. The second is an array of

pointers to the functions to which those names correspond. Note that this means that the

function name in the scripting language and the name of the C function used to implement it



do not have to be the same. Finally, the third is an integer array specifying the number of

arguments that are expected by the functions. The function name, function pointer, and

number of arguments are expected to occupy the same position in each of their respective

arrays. Three arrays are used as opposed to a single array of a new structure containing

three fields to allow for static initialization of all the arrays involved.

When the script parser encounters a non-numeric argument to one of the supported

script commands, it assumes that it has encountered a function call and searches through

the string for a left parenthesis, which confirms that it is a function call. Objects which

require no arguments should still have a set of parentheses enclosing no arguments, as in

C. The function name (up to the left parenthesis) is compared to the array of supported

command names. If a match is found, the corresponding function pointer is stored in the

func field of the ParamStruct, and an array of the appropriate number of ParamStructs is

allocated to be arguments to the function, and pointed to by the args field. Arguments to

script functions are parsed identically to arguments to script commands, and so function

arguments can be constants, references to other parameters (macros and input devices), or

function calls themselves which allows for nested function calls. All function calls are

expected to eventually evaluate to floating point values.

The C functions which implement script functions must therefore adhere to a

common pattern and a new type, called a script_ func is defined for this purpose.

Script_funcs are defined to be functions which take two arguments -- a pointer to an array

of ParamStructs and a pointer to a float -- and return an integer. So far the returned integer

has not been used, but it is left as a hook which might be used in a more intelligent script

interpreter to determine whether the value returned by the function call is capable of

changing. An example of implementing a function which returns the minimum of two

numbers would be:

int sc_min(ParamStruct *args, float *ret)

float vall, val2;



eval-arg(&args[O], &vall);

eval-arg(&args[l1], &val2);

*ret = (vall < val2) ? vall : val2;

return (TRUE);

}

Therefore, to add a new function to the scripting language it is necessary only to

implement it in C following the definition of the script_func type and then add the

name, function pointer, and number of arguments to the appropriate arrays.

As it happens, script commands (such as PLACEACTOR, etc.) are implemented

very similarly to script functions. However, as the process of adding new script

commands involves actually changing the parser, it is not described in this paper.



Appendix B

Structured Video Object File Format

In a structured video decoder system, it is quite possible that the objects may be

transmitted along with the script and decoded as they are received or transmitted ahead of

time and stored in local memory at the receiver. In the system implemented in this thesis,

however, structured video objects are stored in files and loaded as called upon from the

script.

A common file format for representing multi-dimensional data, such as 2D image

sequences or 3D particle databases, which is used at the MIT Media Lab is the "datfile"

format. The structured video object file format is an extension of the datfile format. For a

complete description of this format, see the dat man pages. A dat"file" is actually a

directory which contains two files: a descriptor file and a data file. The descriptor file

describes the format of the data file in terms of the data type (byte, integer, etc.), number of

data sets, channels of data per data set, and dimensions of the channels. Provisions are

also made for user-defined "keys" in the descriptor file which can be used to describe

extensions to the file format.

One of the default behaviors of the decoder implemented in this thesis is to revert to

a simple 2D movie player if a standard 2D datfile is received with no script describing any

other action to be performed on the data. Thus it seemed appropriate that the object file

format be made an extension to the already-in-use datfile format. Figure B-I shows a tree
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Figure B-1: Tree representation of structured video object datfile format. Dashed lines
indicate that all subdatfiles are optional .

representation of the structured video object file format. Ellipses indicate datfiles or

"sub"datfiles, each of which has its own descriptor and data files. A description follows of

the data format of each of the datfiles in the tree along with any special keys which have

been defined in their respective descriptors.

Main datfile:

data --- RGBA, 1-4 channels. Byte format.

1 channel: assumed luma only

2 channel: luma with alpha

3 channel: color

4 channel: color with alpha

If the object is 2D or 2-1/2D, the data is two-dimensional and

assumed to be presented in raster order. Since 3D object data points can be

presented in any order, each channel of a 3D object is one-dimensional with

a number of points corresponding to the total number in the object in each

channel.

desc --- special keys:

F - - - - - F - -I- - - F - - - - -1



_defaultz: Base depth for 2D object data. Changeable in the

script, using PLACEACTOR command.

_posjfile: Name of position subdatfile.

_origjfile: Name of origin points/scale subfile.

_surf file: Name of surface orientation subfile.

matrix-file: Name of matrix subfile.

NOTE: All subdatfiles are optional. The current implementation

will not check for the existence of subdatfiles if the corresponding key is not

defined in the descriptor file. A datfile with no defined special keys will be

treated as a 2D object and will be defaulted to the background depth.

Subdatfiles:

- pos: Contains the depth or position data for 2-1/2D and 3D objects.

pdata --- [xy]z. 1 or 3 channels. Signed 16-bit ('d' or Integer2) format.

1 channel: Z. Object assumed to be 2-1/2D.

3 channel: XYZ. 3D particle database assumed.

As in the main datfile, 2-1/2D data is presented in two-

dimensional raster order. Each of the 3D channels is one-dimensional.

pdesc --- special keys:

_gain: Gain which is to be uniformly applied to all position

data channels.

- orig: Defines origin points and pixel to world scaling factors for 2D and 2-

1/2D objects.



odata --- One channel, one-dimensional, containing 3 floating point

values: <origin_x> <or iginy> <scale f actor>, for each view

of the object.

scale f actor: Floating point value which converts from

pixel resolution to world units. Scaling is assumed to be

uniform in x and y directions.

originx, origin_y: Offsets from the upper left corner

of the 2D data to the point which should be used as the origin of

the object and upon which all placement and path planning will

be based. The pixel offset values are pre-multiplied with the

scale factor to get the origin offset in world coordinates.

odesc --- special keys: None currently defined.

- surf:

sdata --- PQ surface orientation. 2 channels. Float representation.

sdesc --- special keys: None currently defined.

- matrix:

mdata --- 1 channel 4x4 orientation matrix for object. Float

representation. A hook for possible future support of texture mapped

polygons.

mdesc --- special keys: None currently defined.

With the above outlined file format, it is assumed that 2D objects will generally

consist of only a main datfile with an origin/scale subfile; 2-1/2D objects will always have a

1-channel position file and usually an origin/scale file in addition to the main data file; and

3D objects will have a 3-channel position subfile. In addition, the specified file format



allows current 2D image sequences stored as datfiles to be treated as 2D objects in the 3D

world or simply be played back as video sequences with no need for data or format

conversion. Also, many other types of objects which are not currently supported by the

decoder should be supportable with this file format or can be easily supported by the

addition of more specially defined descriptor keys.



Appendix C

Pipeline Implementation Specifics

This appendix is intended primarily for people who will be making future

modifications to the data processing pipeline implemented in this thesis. It describes the

current implementation, as well as discussing some of the reasoning behind the current

design. It is assumed that the reader of this appendix is familiar with the Cheops system as

well as the resource management interface library (RMAN). For additional information on

these topics, see [Various93].

Discussion of the various components in the pipeline will proceed in largely the

same order as the overview of the pipeline which is presented in Chapter 3. For each major

component data flow diagrams are presented. In these diagrams, circles (or ellipses) will

represent memory buffers and rectangles will represent operations performed using Cheops

system hardware.

C.1 The Transformation Unit

As described in section 3.1, the transformation is broken up into two units: one for

processing 3D objects and one for processing 2D and 2-1/2D objects. Both units are

implemented using the Cheops filter stream processor, but the format of 3D data as



opposed to 2D data (including 2-1/2D) is so different and the manner in which the filter

card is used differs so greatly in the two units that they each are described in separate

sections.

C. 1.1 The 3D Transformation Unit

The 3D transformation unit is perhaps the easiest to implement of all the

components in the pipeline. One of the possible configurations of the filter stream

processor is the "render" mode in which a preloaded 4x4 matrix is premultiplied with a

stream of 4x 1 vectors, which just happens to be ideal for the representation of three-

dimensional data points in homogeneous coordinates. Thus, when the 3D object data is

read into memory the x, y, and z channels are interleaved with a w value to create a 4-

vector which is ready to be passed through the transformation unit when necessary. The

matrix which is preloaded into the hardware is the composition of the view matrix defined

by the view parameters with the individual transform matrix for each 3D object. The reader

is again referred to chapter 6 of [Foley90] for a detailed explanation of how these matrices

are created.

Only several hardware details prevent the implementation of this unit from being

completely straightforward. The largest is actually due to the manner in which the

remap/composite processor which is used in the compositing unit requires data to be

presented to it (see section C.2). In order to ease the later creation of the xy stream that will

be required in the compositing unit, the 4-vector which is stored in memory is not the more

standard [x y z w] but is instead [x z y w]. This means merely that in the matrix which is

multiplied with the 3D data, rows 2 and 3 (with rows numbered 1 through 4) must be

swapped, and columns 2 and 3 must also be swapped.

Figure C-1 shows a data flow diagram of the 3D rendering unit which consists of a

single transfer through the Cheops filter hardware in render mode after the matrix has been

preloaded. This makes geometry transformations of 3D objects very fast, since each filter
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Figure C-1: Dataflow diagram for the 3D transformation unit. The transformation
matrix is preloaded into the rendering hardware.

sub-module contains two renderers which can run in parallel, and each renderer can

process 6.7 million points per second.

C.1.2 2D Transformation Unit

As stated in section 3.1.2, the 2D and 2-1/2D transformation unit is implemented

using separable two-dimensional scaling filters. This is a well-known and often-used

operation in the Cheops system, and its data flow diagram is shown in Figure C-2. Up to

five of these filtering pipelines may be requested in parallel if an object has three color

channels as well as a z-buffer and an alpha buffer.

As indicated in the figure, the vertical and horizontal filters can be different. That

allows for output to displays whose aspect ratios are not square even though the current

implementation assumes square aspect ratio. If differing aspect ratios are desired, the

change is trivial.

There really are no particular details that must be watched out for in this pipeline --

it is composed of simple RmanTranspose and RmanFilt er elements.
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Figure C-2: 2D transformation unit implemented using two-dimensional scaling filters.

C.2 The Compositing Unit

The implementation of the compositing unit itself is quite straightforward using the

remap/composite sub-module in the Cheops system. However, a substantial amount of

data rearrangement must occur in between the transformation unit and the compositing unit

in order to create the data streams expected by the remap/composite module. There are also

several possible manners of thinking about how to use the compositing hardware. These

points are discussed in this section along with a discussion of a hardware versus a software

implementation of the compositer.

C.2.1 Stream Rearrangement

The remap/composite sub-module in the Cheops system hardware is called a "two-

phase" device. This means that the device accepts data and stores it in internal memory in



one phase and then outputs data which may have been processed in another phase. In the

input phase (also called the "write" phase since data is being written into the device) the

composite module in z-buffer mode accepts up to two streams of data. One stream is

composed of intensity and z values interleaved, and this stream is required for all object

types. The second stream is present only for 3D objects and consists of the x and y

position values interleaved. The transformation unit does not process nor does it output

data in the same format, so these streams must be created before the hardware z-buffer can

be used.

As described in section C. 1.1, 3D object data is processed by the transformation

unit as [x z y w] vectors. The built-in capability of the Cheops flood controllers to zero-

pad, replicate, and decimate streams of data makes it quite easy to separate these 4-vectors

to create an xy stream and separate out the z to be interleaved with the intensity using only

stream transfers and no other hardware. Figure C-3 shows how this is done in a data flow

diagram (down arrows signify decimation by the indicated factor). Advancing the data

stream by one sample is actually accomplished by telling the destination flood controller

that the delay before data is valid is one sample more than it really is. This causes the

destination flood controller to accept the z value of the first vector as the first valid value

and then the decimating by 4 separates out all the z values into a single buffer. In theory,

the ability of the crosspoint switch to connect multiple sources and destinations into a single

stream transfer should make it possible to create both the xy stream and the z stream in a

single transfer. However, due to the different delays in each stream and the fact the z

buffer is complete before the xy buffer, these separations are currently done as two separate

transfers and the single transfer solution has not yet been tried. There is no loss in

performance using the two-transfer method if the z-buffer is created first, and then the xy

buffer is created in parallel with the interleaving of the z-buffer with the intensity values

which is described next.



Figure C-3: Splitting the transformed 3D 4-vectors into an xy stream and a z stream.

C i 42

Z 42 i delay(1)

Figure C-4: Interleaving the intensity and z values using the filter module in add mode.

While 2D and 2-1/2D objects do not require the creation of an xy stream, all object

types have intensity and z values which must be interleaved in order to be composited in the

hardware. 2-1/2D and 3D objects will already have complete z-buffers ready to be

interleaved, but a small z-buffer containing a constant depth value needs to be created for

2D objects (the data stride passed to the source flood controller hardware can be modified

to make a small buffer seem as large as necessary). The interleaving can be accomplished

quite straightforwardly using the stream adder mode of the filter module as shown in

Figure C-4 (up arrows signify zero-padding by the indicated factor). Each of the streams

to be interleaved is zero-padded by a factor of two and then the z stream is delayed by one

so that when the streams are added, interleaving is the net result. The stream delay is

performed in the filter hardware itself. If the object to be composited is a color object, then

there will be three color components and the same z data will have to be interleaved with
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Figure C-5: Compositing objects using the remap/composite module in composite
mode. The diagonal line indicates that the z-buffer is a two phase device. The xy stream

will only be present when compositing 3D objects.

each of these three streams to form three intensity-z streams to be passed to the compositing

hardware.

Preparing the data streams for the compositing hardware can therefore require as

many as five stream operations on the output of the transformation unit. Once these

operations are completed, however, compositing objects together is very straightforward.

C.2.2 Compositing Objects

As shown in figure C-5, compositing objects using the hardware z-buffer is very

simple. All that is required is to present the appropriate streams to the inputs of the

composite module in the write phase and then read the results of the composition out of the

module in the read phase. What makes compositing objects more complicated are the

replication and decimation factors shown in the same figure which indicate that the

remap/composite hardware is not capable of accepting or of presenting data at the full

system clock rate. The slowness of the hardware leads to various attempts to minimize the

number of transfers that must be made to or from the hardware per object being composited

as well as per frame being assembled.

On an object by object basis the number of transfers into the hardware z-buffer is

currently limited by restricting the maximum frame size to be 512x512 pixels. Since the

internal memory on the composite sub-module is 1024x2048 samples divided into a



1024x1024 intensity buffer and a 1024x1024 z-buffer, this size limit allows all three

components of a color frame to be stored in the hardware at one time so that in between

color components the data does not need to be read out and the hardware reinitialized before

the next component is composited.

In between objects there are two possible ways of thinking about the hardware z-

buffer. The one that minimizes transfers to and from the hardware is to treat the hardware

as a dedicated accumulation buffer so that data does not need to be read out after one object

is composited and then written back in before a new object is composited. Using the

hardware in this manner unfortunately violates the whole concept of the Cheops system

multi-tasking in which several different processes might need to use the same resources.

The NORMAN resource management system was created to minimize resource idle time

and several different processes may be granted permission to use the same hardware in an

interleaving fashion. Thus, there can be no guarantee that the data in the z-buffer will be

the same when a process returns to it as when the process left it. The "correct" way to use

the hardware is, therefore, to preload the z-buffer with any partial frame that may already

have been assembled, composite the new object into that frame, and then read the results

back out so they can be preloaded before the next object is composited. This is also true if

alpha blending is to be implemented correctly. Currently, alpha is faked in 2D objects by

creating a z-buffer that is set to the minimum possible z-value in regions where the object is

supposed to be transparent so that those regions will not show. If the data is read out of

the z-buffer, then it can be multiplied by the proper factor and new data added in. The ideal

solution to alpha would of course be a sub-module which could perform alpha blending

and compositing at the same time in hardware.

C.2.3 Hardware versus Software Compositing

In the currently operational implementation of the compositing unit, all of the above

discussion and acrobatics is bypassed by doing all the compositing of objects directly into



the output buffers using software routines custom written in assembly language. Using

software has several advantages over hardware: none of the data stream rearrangement

described in section C.2.1 needs to be performed; no multiple passes through the slow z-

buffer hardware are necessary; and the data is already in the output buffer when

composition is complete as opposed to having to read it back into local memory from the

sub-module memory. Additionally, no temporary buffers are needed to store the

intermediate streams of data or the partially assembled frames. Thus, while the hardware is

much faster than software, the tremendous reduction in overhead that the software provides

makes it a viable solution.

Empirically, it has been found that using the software compositing unit the system

can composite a 200x400 actor into a 512x512 background at approximately six frames per

second, while using the hardware with its associated overhead can only produce just under

three frames per second of the same sequence. The performance of the hardware and

software become about equal when compositing very large 3D objects (greater than

250,000 points) -- both hardware and software can render and display just over two frames

per second -- but a 3D object consisting of only 3000 points can be rendered by the

software at about 15 frames per second while the hardware is capable of only about 6

frames per second.

For these reasons, the structured video decoder currently operates with a software

compositing unit by default. The hardware compositing unit described above has also been

implemented, however, and a command line argument at system startup time can specify

that the decoder should use the hardware instead of the software.

Undoubtedly the future will bring new and/or improved Cheops system hardware

and changes will need to be made to the structured video decoder as it currently stands. It

is hoped that this section has helped prepare the reader for what he or she will find when

delving into the depths of the code which implement the system.


