43 research outputs found
Foraging habitat selection of shrubland bird community in tropical dry forest
Habitat loss due to increasing anthropogenic disturbance is the major driver for bird population declines across the globe. Within the Eastern Ghats of India, shrubland bird communities are threatened by shrinking of suitable habitats due to increased anthropogenic disturbance and climate change. The development of an effective habitat management strategy is hampered by the absence of data for this bird community. To address this knowledge gap, we examined foraging sites for 14 shrubland bird species, including three declining species, in three study areas representing the shrubland type of forest community in the Eastern Ghats. We recorded microhabitat features within an 11 m radius of observed foraging points and compared these data with similar data from random plots. We used chi-square to test the association between plant species and bird species for sites where they were observed foraging. We observed significant differences between foraging sites of all the study species and random plots, thus indicating selection for foraging habitat. Using linear discriminant analysis, we found that the microhabitat features important for the bird species were shrub density, vegetational height, vertical foliage stratification, grass height, and percent rock cover. Our results show that diet guild and foraging strata influence the foraging microhabitat selection of a species (e.g., ground-foraging species differed significantly from other species). Except for two species, all focal birds were associated with at least one plant species. The plant-bird association was based on foraging, structural, or behavioral preferences. Several key factors affecting foraging habitat such as shrub density can be actively managed at the local scale. Strategic and selective harvesting of forest products and a spatially and temporally controlled livestock grazing regime may allow regeneration of scrubland and create conditions favorable to birds
Climatic and geographic predictors of life history variation in Eastern Massasauga (Sistrurus catenatus): A range-wide synthesis
Elucidating how life history traits vary geographically is important to understanding variation in population dynamics. Because many aspects of ectotherm life history are climate-dependent, geographic variation in climate is expected to have a large impact on population dynamics through effects on annual survival, body size, growth rate, age at first reproduction, size-fecundity relationship, and reproductive frequency. The Eastern Massasauga (Sistrurus catenatus) is a small, imperiled North American rattlesnake with a distribution centered on the Great Lakes region, where lake effects strongly influence local conditions. To address Eastern Massasauga life history data gaps, we compiled data from 47 study sites representing 38 counties across the range. We used multimodel inference and general linear models with geographic coordinates and annual climate normals as explanatory variables to clarify patterns of variation in life history traits. We found strong evidence for geographic variation in six of nine life history variables. Adult female snout-vent length and neonate mass increased with increasing mean annual precipitation. Litter size decreased with increasing mean temperature, and the size-fecundity relationship and growth prior to first hibernation both increased with increasing latitude. The proportion of gravid females also increased with increasing latitude, but this relationship may be the result of geographically varying detection bias. Our results provide insights into ectotherm life history variation and fill critical data gaps, which will inform Eastern Massasauga conservation efforts by improving biological realism for models of population viability and climate change
SNAPSHOT USA 2019 : a coordinated national camera trap survey of the United States
This article is protected by copyright. All rights reserved.With the accelerating pace of global change, it is imperative that we obtain rapid inventories of the status and distribution of wildlife for ecological inferences and conservation planning. To address this challenge, we launched the SNAPSHOT USA project, a collaborative survey of terrestrial wildlife populations using camera traps across the United States. For our first annual survey, we compiled data across all 50 states during a 14-week period (17 August - 24 November of 2019). We sampled wildlife at 1509 camera trap sites from 110 camera trap arrays covering 12 different ecoregions across four development zones. This effort resulted in 166,036 unique detections of 83 species of mammals and 17 species of birds. All images were processed through the Smithsonian's eMammal camera trap data repository and included an expert review phase to ensure taxonomic accuracy of data, resulting in each picture being reviewed at least twice. The results represent a timely and standardized camera trap survey of the USA. All of the 2019 survey data are made available herein. We are currently repeating surveys in fall 2020, opening up the opportunity to other institutions and cooperators to expand coverage of all the urban-wild gradients and ecophysiographic regions of the country. Future data will be available as the database is updated at eMammal.si.edu/snapshot-usa, as well as future data paper submissions. These data will be useful for local and macroecological research including the examination of community assembly, effects of environmental and anthropogenic landscape variables, effects of fragmentation and extinction debt dynamics, as well as species-specific population dynamics and conservation action plans. There are no copyright restrictions; please cite this paper when using the data for publication.Publisher PDFPeer reviewe
Wildlife associates of nine-banded armadillo (Dasypus novemcinctus) burrows in Arkansas
The Nine-banded Armadillo (Dasypus novemcinctus) is a widespread burrowing species with an expanding geographic range across the southeastern and midwestern United States. Armadillos dig numerous, large burrows within their home ranges and these burrows are likely used by a diverse suite of wildlife species as has been reported for other burrowing ecosystem engineers such as Gopher Tortoises (Gopherus polyphemus), Desert Tortoises (Gopherus agassizi), and Black-tailed Prairie Dogs (Cynomys ludovicianus). We used motion-triggered game cameras at 35 armadillo burrows in 4 ecoregions of Arkansas and documented 19 species of mammals, 4 species of reptile, 1 species of amphibian, and 40 species of bird interacting with burrows. Bobcat (Lynx rufus), Coyote (Canis latrans), Eastern Cottontail (Sylvilagus floridanus), Gray Fox (Urocyon cinereoargenteus), Gray Squirrel (Sciurus carolinensis), Northern Raccoon (Procyon lotor), Virginia Opossum (Didelphis virginiana), and unidentified rodents (mice and rats) were documented using burrows in all four ecoregions. We documented wildlife hunting, seeking shelter, rearing young in, and taking over and modifying armadillo burrows. The rate of use was highest in the Mississippi Alluvial Valley, a landscape dominated by agriculture, where natural refugia may be limited and rodents are abundant. Armadillo burrows are clearly visited and used by numerous wildlife species to fulfill various life stage requirements, and this list will likely expand if more attention is devoted to understanding the role of armadillos burrows. Armadillos are important ecosystem engineers, and their ecological role warrants more investigation and attention as opposed to only being viewed and managed as agricultural and garden pests
Tradeoffs with Growth and Behavior for Captive Box Turtles Head-Started with Environmental Enrichment
Head-starting is a conservation strategy that entails releasing captive-reared animals into nature at sizes large enough to better resist post-release predation. However, efforts to maximize growth in captivity may jeopardize development of beneficial behaviors. Environmental enrichment can encourage natural behaviors before release but potentially comes with a tradeoff of reduced growth in complex enclosures. We compared growth and behavior of enriched and unenriched captive-born juvenile box turtles (Terrapene carolina). Enriched turtles grew slower than unenriched turtles during the first eight months in captivity, although growth rates did not differ between treatments from 9–20 months old. After five months post-hatching, unenriched turtles became and remained larger overall than enriched turtles. During two foraging tasks, unenriched turtles consumed more novel prey than enriched turtles. In a predator recognition test, eight-month-old enriched turtles avoided raccoon (Procyon lotor) urine more than unenriched turtles of the same age, but this difference was not apparent one year later. The odds of turtles emerging from a shelter did not differ between treatments regardless of age. Although our results suggest turtles raised in unenriched environments initially grew faster and obtained larger overall sizes than those in enriched conditions, tradeoffs with ecologically-relevant behaviors were either absent or conditional
Occupancy and Activity Patterns of Nine-Banded Armadillos (<i>Dasypus novemcinctus</i>) in a Suburban Environment
The geographic range of the nine-banded armadillo (Dasypus novemcinctus) has rapidly been expanding within the United States for the last 150 years. One of the factors contributing to this astounding range expansion is the species’ ability to survive in and colonize human-dominated areas. Despite the fact that armadillos live alongside humans in numerous towns and cities across the Southeastern, Southcentral, and now Midwestern United States, we know relatively little about the behavior and ecology of armadillos in human-developed areas. Here, we used motion-triggered game cameras in over 115 residential yards in the rapidly developing Northwest corner of Arkansas to survey armadillos in a largely suburban environment. Our objectives were to explore trends in armadillo occupancy and daily activity patterns in a suburban setting. We documented armadillos in approximately 84% of the yards surveyed indicating that the species was widespread throughout the environment. We found that the species was more likely to occupy yards surrounded by a high proportion of forest cover. We found no relationship between armadillo occupancy and other land cover or development covariates. Only 2% of nearly 2000 armadillo detections occurred during the day indicating that the species is almost exclusively nocturnal during the summer months when living near humans in the suburban environment, which we suggest is likely an adaptation to avoid contact with humans and their dogs. As the armadillo continues to expand its geographic range to areas where it has not previously occurred, understanding how human development supports and facilitates the spread of this species can elucidate areas where conflict between humans and armadillos might occur allowing for preemptive management or education to mitigate conflict
Out-foxing the red fox: How best to protect the nests of the Endangered loggerhead marine turtle Caretta caretta from mammalian predation?
Recovery plans for the Endangered loggerhead marine turtle Caretta caretta cite mammalian predation as a major threat, and recommend nest protection efforts, already present at many rookery beaches, to protect eggs and hatchlings. Nest protection techniques vary but wire box cages and plastic mesh screens are two common tools used to deter predation by a host of beach-foraging, opportunistic mammalian predators. We empirically tested the efficacy of wire cages and plastic mesh screens in preventing red fox Vulpes vulpes predation on artificial nests. Both techniques averted fox predation (0%), whereas unprotected control nests suffered 33% predation under conditions of normal predator motivation, or a level of motivation stimulated by loggerhead turtle egg scent. However, in side-by-side comparisons under conditions of presumed high predator motivation, 25% of mesh screens were breached whereas no cage-protected nests were successfully predated. In addition to effectiveness at preventing predation, factors such as cost, ease of use, deployment time, and magnetic disturbance were evaluated. Our study suggests that the efficacy of plastic screens and the potential disadvantages associated with galvanized wire should influence selection of mechanical barriers on beaches where fox predation threatens loggerhead nests. © 2011 Fauna & Flora International