203 research outputs found

    Structure of the Triatoma virus capsid

    Get PDF
    The members of the Dicistroviridae family are non-enveloped positive-sense single-stranded RNA (+ssRNA) viruses pathogenic to beneficial arthropods as well as insect pests of medical importance. Triatoma virus (TrV), a member of this family, infects several species of triatomine insects (popularly named kissing bugs), which are vectors for human trypanosomiasis, more commonly known as Chagas disease. The potential use of dicistroviruses as biological control agents has drawn considerable attention in the past decade, and several viruses of this family have been identified, with their targets covering honey bees, aphids and field crickets, among others. Here, the crystal structure of the TrV capsid at 2.5 14;Å resolution is reported, showing that as expected it is very similar to that of Cricket paralysis virus (CrPV). Nevertheless, a number of distinguishing structural features support the introduction of a new genus (Triatovirus; type species TrV) under the Dicistroviridae family. The most striking differences are the absence of icosahedrally ordered VP4 within the infectious particle and the presence of prominent projections that surround the fivefold axis. Furthermore, the structure identifies a second putative autoproteolytic DDF motif in protein VP3, in addition to the conserved one in VP1 which is believed to be responsible for VP0 cleavage during capsid maturation. The potential meaning of these new findings is discussed.Centro de Estudios Parasitológicos y de Vectore

    A functional selection of viral genetic elements in cultured cells to identify hepatitis C virus RNA translation inhibitors†

    Get PDF
    We developed a functional selection system based on randomized genetic elements (GE) to identify potential regulators of hepatitis C virus (HCV) RNA translation, a process initiated by an internal ribosomal entry site (IRES). A retroviral HCV GE library was introduced into HepG2 cells, stably expressing the Herpes simplex virus thymidine kinase (HSV-TK) under the control of the HCV IRES. Cells that expressed transduced GEs inhibiting HSV-TK were selected via their resistance to ganciclovir. Six major GEs were rescued by PCR on the selected cell DNA and identified as HCV elements. We validated our strategy by further studying the activity of one of them, GE4, encoding the 5′ end of the viral NS5A gene. GE4 inhibited HCV IRES-, but not cap-dependent, reporter translation in human hepatic cell lines and inhibited HCV infection at a post-entry step, decreasing by 85% the number of viral RNA copies. This method can be applied to the identification of gene expression regulators

    Structure of the Triatoma virus capsid

    Get PDF
    The members of the Dicistroviridae family are non-enveloped positive-sense single-stranded RNA (+ssRNA) viruses pathogenic to beneficial arthropods as well as insect pests of medical importance. Triatoma virus (TrV), a member of this family, infects several species of triatomine insects (popularly named kissing bugs), which are vectors for human trypanosomiasis, more commonly known as Chagas disease. The potential use of dicistroviruses as biological control agents has drawn considerable attention in the past decade, and several viruses of this family have been identified, with their targets covering honey bees, aphids and field crickets, among others. Here, the crystal structure of the TrV capsid at 2.5 14;Å resolution is reported, showing that as expected it is very similar to that of Cricket paralysis virus (CrPV). Nevertheless, a number of distinguishing structural features support the introduction of a new genus (Triatovirus; type species TrV) under the Dicistroviridae family. The most striking differences are the absence of icosahedrally ordered VP4 within the infectious particle and the presence of prominent projections that surround the fivefold axis. Furthermore, the structure identifies a second putative autoproteolytic DDF motif in protein VP3, in addition to the conserved one in VP1 which is believed to be responsible for VP0 cleavage during capsid maturation. The potential meaning of these new findings is discussed.Centro de Estudios Parasitológicos y de Vectore

    Formation of an RNA polymerase II preinitiation complex on an RNA promoter derived from the hepatitis delta virus RNA genome

    Get PDF
    Although RNA polymerases (RNAPs) are able to use RNA as template, it is unknown how they recognize RNA promoters. In this study, we used an RNA fragment derived from the hepatitis delta virus (HDV) genome as a model to investigate the recognition of RNA promoters by RNAP II. Inhibition of the transcription reaction using an antibody specific to the largest subunit of RNAP II and the direct binding of purified RNAP II to the RNA promoter confirmed the involvement of RNAP II in the reaction. RNA affinity chromatography established that an active RNAP II preinitiation complex forms on the RNA promoter and indicated that this complex contains the core RNAP II subunit and the general transcription factors TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH and TFIIS. Binding assays demonstrated the direct binding of the TATA-binding protein and suggested that this protein is required to nucleate the RNAP II complex on the RNA promoter. Our findings provide a better understanding of the events leading to RNA promoter recognition by RNAP II

    The Structure of an RNAi Polymerase Links RNA Silencing and Transcription

    Get PDF
    RNA silencing refers to a group of RNA-induced gene-silencing mechanisms that developed early in the eukaryotic lineage, probably for defence against pathogens and regulation of gene expression. In plants, protozoa, fungi, and nematodes, but apparently not insects and vertebrates, it involves a cell-encoded RNA-dependent RNA polymerase (cRdRP) that produces double-stranded RNA triggers from aberrant single-stranded RNA. We report the 2.3-Å resolution crystal structure of QDE-1, a cRdRP from Neurospora crassa, and find that it forms a relatively compact dimeric molecule, each subunit of which comprises several domains with, at its core, a catalytic apparatus and protein fold strikingly similar to the catalytic core of the DNA-dependent RNA polymerases responsible for transcription. This evolutionary link between the two enzyme types suggests that aspects of RNA silencing in some organisms may recapitulate transcription/replication pathways functioning in the ancient RNA-based world

    Structure of the St. Louis encephalitis virus postfusion envelope trimer

    Get PDF
    St. Louis encephalitis virus (SLEV) is a mosquito-borne flavivirus responsible for several human encephalitis outbreaks over the last 80 years. Mature flavivirus virions are coated with dimeric envelope (E) proteins that mediate attachment and fusion with host cells. E is a class II fusion protein, the hallmark of which is a distinct dimer-to-trimer rearrangement that occurs upon endosomal acidification and insertion of hydrophobic fusion peptides into the endosomal membrane. Herein, we report the crystal structure of SLEV E in the posfusion trimer conformation. The structure revealed specific features that differentiate SLEV E from trimers of related flavi- and alphaviruses. SLEV E fusion loops have distinct intermediate spacing such that they are positioned further apart than previously observed in flaviviruses but closer together than Semliki Forest virus, an alphavirus. Domains II and III (DII and DIII) of SLEV E also adopt different angles relative to DI, which suggests that the DI-DII joint may accommodate spheroidal motions. However, trimer interfaces are well conserved among flaviviruses, so it is likely the differences observed represent structural features specific to SLEV function. Analysis of surface potentials revealed a basic platform underneath flavivirus fusion loops that may interact with the anionic lipid head groups found in membranes. Taken together, these results highlight variations in E structure and assembly that may direct virus-specific interactions with host determinants to influence pathogenesis

    NS3 protease from flavivirus as a target for designing antiviral inhibitors against dengue virus

    Get PDF
    The development of novel therapeutic agents is essential for combating the increasing number of cases of dengue fever in endemic countries and among a large number of travelers from non-endemic countries. The dengue virus has three structural proteins and seven non-structural (NS) proteins. NS3 is a multifunctional protein with an N-terminal protease domain (NS3pro) that is responsible for proteolytic processing of the viral polyprotein, and a C-terminal region that contains an RNA triphosphatase, RNA helicase and RNA-stimulated NTPase domain that are essential for RNA replication. The serine protease domain of NS3 plays a central role in the replicative cycle of dengue virus. This review discusses the recent structural and biological studies on the NS2B-NS3 protease-helicase and considers the prospects for the development of small molecules as antiviral drugs to target this fascinating, multifunctional protein

    Structural Optimization and De Novo Design of Dengue Virus Entry Inhibitory Peptides

    Get PDF
    Viral fusogenic envelope proteins are important targets for the development of inhibitors of viral entry. We report an approach for the computational design of peptide inhibitors of the dengue 2 virus (DENV-2) envelope (E) protein using high-resolution structural data from a pre-entry dimeric form of the protein. By using predictive strategies together with computational optimization of binding “pseudoenergies”, we were able to design multiple peptide sequences that showed low micromolar viral entry inhibitory activity. The two most active peptides, DN57opt and 1OAN1, were designed to displace regions in the domain II hinge, and the first domain I/domain II beta sheet connection, respectively, and show fifty percent inhibitory concentrations of 8 and 7 µM respectively in a focus forming unit assay. The antiviral peptides were shown to interfere with virus:cell binding, interact directly with the E proteins and also cause changes to the viral surface using biolayer interferometry and cryo-electron microscopy, respectively. These peptides may be useful for characterization of intermediate states in the membrane fusion process, investigation of DENV receptor molecules, and as lead compounds for drug discovery

    Peptide Inhibitors of Dengue-Virus Entry Target a Late-Stage Fusion Intermediate

    Get PDF
    The mechanism of membrane fusion by “class II” viral fusion proteins follows a pathway that involves large-scale domain rearrangements of the envelope glycoprotein (E) and a transition from dimers to trimers. The rearrangement is believed to proceed by an outward rotation of the E ectodomain after loss of the dimer interface, followed by a reassociation into extended trimers. The ∼55-aa-residue, membrane proximal “stem” can then zip up along domain II, bringing together the transmembrane segments of the C-terminus and the fusion loops at the tip of domain II. We find that peptides derived from the stem of dengue-virus E bind stem-less E trimer, which models a conformational intermediate. In vitro assays demonstrate that these peptides specifically block viral fusion. The peptides inhibit infectivity with potency proportional to their affinity for the conformational intermediate, even when free peptide is removed from a preincubated inoculum before infecting cells. We conclude that peptides bind virions before attachment and are carried with virions into endosomes, the compartment in which acidification initiates fusion. Binding depends on particle dynamics, as there is no inhibition of infectivity if preincubation and separation are at 4°C rather than 37°C. We propose a two-step model for the mechanism of fusion inhibition. Targeting a viral entry pathway can be an effective way to block infection. Our data, which support and extend proposed mechanisms for how the E conformational change promotes membrane fusion, suggest strategies for inhibiting flavivirus entry

    Antibodies against the Envelope Glycoprotein Promote Infectivity of Immature Dengue Virus Serotype 2

    Get PDF
    Cross-reactive dengue virus (DENV) antibodies directed against the envelope (E) and precursor membrane (prM) proteins are believed to contribute to the development of severe dengue disease by facilitating antibody-dependent enhancement of infection. We and others recently demonstrated that anti-prM antibodies render essentially non-infectious immature DENV infectious in Fcγ-receptor-expressing cells. Immature DENV particles are abundantly present in standard (st) virus preparations due to inefficient processing of prM to M during virus maturation. Structural analysis has revealed that the E protein is exposed in immature particles and this prompted us to investigate whether antibodies to E render immature particles infectious. To this end, we analyzed the enhancing properties of 27 anti-E antibodies directed against distinct structural domains. Of these, 23 bound to immature particles, and 15 enhanced infectivity of immature DENV in a furin-dependent manner. The significance of these findings was subsequently tested in vivo using the well-established West Nile virus (WNV) mouse model. Remarkably, mice injected with immature WNV opsonized with anti-E mAbs or immune serum produced a lethal infection in a dose-dependent manner, whereas in the absence of antibody immature WNV virions caused no morbidity or mortality. Furthermore, enhancement infection studies with standard (st) DENV preparations opsonized with anti-E mAbs in the presence or absence of furin inhibitor revealed that prM-containing particles present within st virus preparations contribute to antibody-dependent enhancement of infection. Taken together, our results support the notion that antibodies against the structural proteins prM and E both can promote pathogenesis by enhancing infectivity of prM-containing immature and partially mature flavivirus particles
    corecore