78 research outputs found
Republican States Bolstered Their Health Insurance Rate Review Programs Using Incentives From the Affordable Care Act.
The Affordable Care Act (ACA) included financial and regulatory incentives and goals for states to bolster their health insurance rate review programs, increase their anticipated loss ratio requirements, expand Medicaid, and establish state-based exchanges. We grouped states by political party control and compared their reactions across these policy goals. To identify changes in states rate review programs and anticipated loss ratio requirements in the individual and small group markets since the ACAs enactment, we conducted legal research and contacted each states insurance regulator. We linked rate review program changes to the Centers for Medicare and Medicaid Services (CMS) criteria for an effective rate review program. We found, of states that did not meet CMSs criteria when the ACA was enacted, most made changes to meet those criteria, including Republican-controlled states, which generally oppose the ACA. This finding is likely the result of the relatively low administrative burden associated with reviewing health insurance rates and the fact that doing so prevents federal intervention in rate review. However, Republican-controlled states were less likely than non-Republican-controlled states to increase their anticipated loss ratio requirements to align with the federal retrospective medical loss ratio requirement, expand Medicaid, and establish state-based exchanges, because of their general opposition to the ACA. We conclude that federal incentives for states to strengthen their health insurance rate review programs were more effective than the incentives for states to adopt other insurance-related policy goals of the ACA
Accountable Care Organizations in California: Promise and Performance
California has more accountable care organizations (ACOs) than any other state in the country, with particularly rapid growth over the past two years. This report introduces new evidence that ACOs improve the quality of care, increase patient satisfaction, and may reduce costs
Non-perturbative dynamics of hot non-Abelian gauge fields: beyond leading log approximation
Many aspects of high-temperature gauge theories, such as the electroweak
baryon number violation rate, color conductivity, and the hard gluon damping
rate, have previously been understood only at leading logarithmic order (that
is, neglecting effects suppressed only by an inverse logarithm of the gauge
coupling). We discuss how to systematically go beyond leading logarithmic order
in the analysis of physical quantities. Specifically, we extend to
next-to-leading-log order (NLLO) the simple leading-log effective theory due to
Bodeker that describes non-perturbative color physics in hot non-Abelian
plasmas. A suitable scaling analysis is used to show that no new operators
enter the effective theory at next-to-leading-log order. However, a NLLO
calculation of the color conductivity is required, and we report the resulting
value. Our NLLO result for the color conductivity can be trivially combined
with previous numerical work by G. Moore to yield a NLLO result for the hot
electroweak baryon number violation rate.Comment: 20 pages, 1 figur
The Genome Sequence of Caenorhabditis briggsae: A Platform for Comparative Genomics
The soil nematodes Caenorhabditis briggsae and Caenorhabditis elegans diverged from a common ancestor roughly 100 million years ago and yet are almost indistinguishable by eye. They have the same chromosome number and genome sizes, and they occupy the same ecological niche. To explore the basis for this striking conservation of structure and function, we have sequenced the C. briggsae genome to a high-quality draft stage and compared it to the finished C. elegans sequence. We predict approximately 19,500 protein-coding genes in the C. briggsae genome, roughly the same as in C. elegans. Of these, 12,200 have clear C. elegans orthologs, a further 6,500 have one or more clearly detectable C. elegans homologs, and approximately 800 C. briggsae genes have no detectable matches in C. elegans. Almost all of the noncoding RNAs (ncRNAs) known are shared between the two species. The two genomes exhibit extensive colinearity, and the rate of divergence appears to be higher in the chromosomal arms than in the centers. Operons, a distinctive feature of C. elegans, are highly conserved in C. briggsae, with the arrangement of genes being preserved in 96% of cases. The difference in size between the C. briggsae (estimated at approximately 104 Mbp) and C. elegans (100.3 Mbp) genomes is almost entirely due to repetitive sequence, which accounts for 22.4% of the C. briggsae genome in contrast to 16.5% of the C. elegans genome. Few, if any, repeat families are shared, suggesting that most were acquired after the two species diverged or are undergoing rapid evolution. Coclustering the C. elegans and C. briggsae proteins reveals 2,169 protein families of two or more members. Most of these are shared between the two species, but some appear to be expanding or contracting, and there seem to be as many as several hundred novel C. briggsae gene families. The C. briggsae draft sequence will greatly improve the annotation of the C. elegans genome. Based on similarity to C. briggsae, we found strong evidence for 1,300 new C. elegans genes. In addition, comparisons of the two genomes will help to understand the evolutionary forces that mold nematode genomes
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Genome-wide Association Study of Long COVID
SummaryInfections can lead to persistent or long-term symptoms and diseases such as shingles after varicella zoster, cancers after human papillomavirus, or rheumatic fever after streptococcal infections1, 2. Similarly, infection by SARS-CoV-2 can result in Long COVID, a condition characterized by symptoms of fatigue and pulmonary and cognitive dysfunction3–5. The biological mechanisms that contribute to the development of Long COVID remain to be clarified. We leveraged the COVID-19 Host Genetics Initiative6, 7to perform a genome-wide association study for Long COVID including up to 6,450 Long COVID cases and 1,093,995 population controls from 24 studies across 16 countries. We identified the first genome-wide significant association for Long COVID at theFOXP4locus.FOXP4has been previously associated with COVID-19 severity6, lung function8, and cancers9, suggesting a broader role for lung function in the pathophysiology of Long COVID. While we identify COVID-19 severity as a causal risk factor for Long COVID, the impact of the genetic risk factor located in theFOXP4locus could not be solely explained by its association to severe COVID-19. Our findings further support the role of pulmonary dysfunction and COVID-19 severity in the development of Long COVID.</jats:p
Erratum: Corrigendum: Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution
International Chicken Genome Sequencing Consortium.
The Original Article was published on 09 December 2004.
Nature432, 695–716 (2004).
In Table 5 of this Article, the last four values listed in the ‘Copy number’ column were incorrect. These should be: LTR elements, 30,000; DNA transposons, 20,000; simple repeats, 140,000; and satellites, 4,000. These errors do not affect any of the conclusions in our paper.
Additional information.
The online version of the original article can be found at 10.1038/nature0315
31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two
Background
The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd.
Methods
We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background.
Results
First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001).
Conclusions
In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
- …