235 research outputs found

    Protein import into chloroplasts

    Get PDF

    Overlapping reading frames in Oenothera mitochondria

    Get PDF
    AbstractAn open reading frame (ORF) preceding the cytochrome oxidase subunit II (CO II) gene in Oenothera mitochondria has four nucleotides in common with this gene. The last two nucleotides of the CO II initiation codon ATG are the first two nucleotides of the TGA termination codon in the upstream ORF. Both reading frames are cotranscribed in a bicistronic mRNA species of 1250 nucleotides in length in Oenothera. The open reading frame codes for a protein of 58 amino acids with structural homology to the ATPase subunit 8 genes in fungal and mammalian mitochondria. Using coding space optimally though overlapping genes appears to be without economical reason considering the large size of higher plant mitochondrial genomes

    REDIdb: the RNA editing database

    Get PDF
    The RNA Editing Database (REDIdb) is an interactive, web-based database created and designed with the aim to allocate RNA editing events such as substitutions, insertions and deletions occurring in a wide range of organisms. The database contains both fully and partially sequenced DNA molecules for which editing information is available either by experimental inspection (in vitro) or by computational detection (in silico). Each record of REDIdb is organized in a specific flat-file containing a description of the main characteristics of the entry, a feature table with the editing events and related details and a sequence zone with both the genomic sequence and the corresponding edited transcript. REDIdb is a relational database in which the browsing and identification of editing sites has been simplified by means of two facilities to either graphically display genomic or cDNA sequences or to show the corresponding alignment. In both cases, all editing sites are highlighted in colour and their relative positions are detailed by mousing over. New editing positions can be directly submitted to REDIdb after a user-specific registration to obtain authorized secure access. This first version of REDIdb database stores 9964 editing events and can be freely queried at

    Crystal structures of the Arabidopsis thaliana organellar RNA editing factors MORF1 and MORF9

    Get PDF
    In flowering plant plastids and mitochondria, multiple organellar RNA editing factor (MORF/RIP) proteins are required at most sites for efficient C to U RNA editing catalyzed by the RNA editosome. MORF proteins harbor a conserved stretch of residues (MORF-box), form homo- and heteromers and interact with selected PPR (pentatricopeptide repeat) proteins, which recognize each editing site. The molecular function of the MORF-box remains elusive since it shares no sequence similarity with known domains. We determined structures of the A. thaliana mitochondrial MORF1 and chloroplast MORF9 MORF-boxes which both adopt a novel globular fold (MORF domain). Our structures state a paradigmatic model for MORF domains and their specific dimerization via a hydrophobic interface. We cross-validate the interface by yeast two-hybrid studies and pulldown assays employing structure-based mutants. We find a structural similarity of the MORF domain to an N-terminal ferredoxin-like domain (NFLD), which confers RNA substrate positioning in bacterial 4-thio-uracil tRNA synthetases, implying direct RNA contacts of MORF proteins during RNA editing. With the MORF1 and MORF9 structures we elucidate a yet unknown fold, corroborate MORF interaction studies, validate the mechanism of MORF multimerization by structure-based mutants and pave the way towards a complete structural characterization of the plant RNA editosome

    The life of plant mitochondrial complex I

    Get PDF
    The mitochondrial NADH dehydrogenase complex (complex I) of the respiratory chain has several remarkable features in plants: (i) particularly many of its subunits are encoded by the mitochondrial genome, (ii) its mitochondrial transcripts undergo extensive maturation processes (e.g. RNA editing, trans-splicing), (iii) its assembly follows unique routes, (iv) it includes an additional functional domain which contains carbonic anhydrases and (v) it is, indirectly, involved in photosynthesis. Comprising about 50 distinct protein subunits, complex I of plants is very large. However, an even larger number of proteins are required to synthesize these subunits and assemble the enzyme complex. This review aims to follow the complete "life cycle" of plant complex I from various molecular perspectives. We provide arguments that complex I represents an ideal model system for studying the interplay of respiration and photosynthesis, the cooperation of mitochondria and the nucleus during organelle biogenesis and the evolution of the mitochondrial oxidative phosphorylation system. © 2014 Elsevier B.V

    Large-scale detection and analysis of RNA editing in grape mtDNA by RNA deep-sequencing

    Get PDF
    RNA editing is a widespread post-transcriptional molecular phenomenon that can increase proteomic diversity, by modifying the sequence of completely or partially non-functional primary transcripts, through a variety of mechanistically and evolutionarily unrelated pathways. Editing by base substitution has been investigated in both animals and plants. However, conventional strategies based on directed Sanger sequencing are time-consuming and effectively preclude genome wide identification of RNA editing and assessment of partial and tissue-specific editing sites. In contrast, the high-throughput RNA-Seq approach allows the generation of a comprehensive landscape of RNA editing at the genome level. Short reads from Solexa/Illumina GA and ABI SOLiD platforms have been used to investigate the editing pattern in mitochondria of Vitis vinifera providing significant support for 401 C-to-U conversions in coding regions and an additional 44 modifications in non-coding RNAs. Moreover, 76% of all C-to-U conversions in coding genes represent partial RNA editing events and 28% of them were shown to be significantly tissue specific. Solexa/Illumina and SOLiD platforms showed different characteristics with respect to the specific issue of large-scale editing analysis, and the combined approach presented here reduces the false positive rate of discovery of editing events

    Amino acid sequence variations in Nicotiana CRR4 orthologs determine the species-specific efficiency of RNA editing in plastids

    Get PDF
    In flowering plants, RNA editing is a posttranscriptional process that converts specific C to U in organelle mRNAs. Nicotiana tabacum is an allotetraploid species derived from the progenitors of Nicotiana sylvestris and Nicotiana tomentosiformis. These Nicotiana species have been used as a model for understanding the mechanism and evolution of RNA editing in plastids. In Nicotiana species, the ndhD-1 site is edited to create the translational initiation codon of ndhD that encodes a subunit of the NAD(P)H dehydrogenease (NDH) complex. An analysis of this RNA editing revealed that editing efficiency in N. tomentosiformis is lower (15%) than that in N. tabacum (42%) and N. sylvestris (37%). However, this level of editing is sufficient for accumulating the NDH complex and its activity. The heterogous complementation of Arabidopsis crr4-3 mutant, in which RNA editing of ndhD-1 is completely impaired, with CRR4 orthologous genes derived from Nicotiana species suggested that the reduction in editing efficiency in N. tomentosiformis is caused by amino acid variations accumulating in CRR4

    Is plant mitochondrial RNA editing a source of phylogenetic incongruence? An answer from in silico and in vivo data sets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In plant mitochondria, the post-transcriptional RNA editing process converts C to U at a number of specific sites of the mRNA sequence and usually restores phylogenetically conserved codons and the encoded amino acid residues. Sites undergoing RNA editing evolve at a higher rate than sites not modified by the process. As a result, editing sites strongly affect the evolution of plant mitochondrial genomes, representing an important source of sequence variability and potentially informative characters.</p> <p>To date no clear and convincing evidence has established whether or not editing sites really affect the topology of reconstructed phylogenetic trees. For this reason, we investigated here the effect of RNA editing on the tree building process of twenty different plant mitochondrial gene sequences and by means of computer simulations.</p> <p>Results</p> <p>Based on our simulation study we suggest that the editing ‘noise’ in tree topology inference is mainly manifested at the cDNA level. In particular, editing sites tend to confuse tree topologies when artificial genomic and cDNA sequences are generated shorter than 500 bp and with an editing percentage higher than 5.0%. Similar results have been also obtained with genuine plant mitochondrial genes. In this latter instance, indeed, the topology incongruence increases when the editing percentage goes up from about 3.0 to 14.0%. However, when the average gene length is higher than 1,000 bp (<it>rps3</it>, <it>matR</it> and <it>atp1</it>) no differences in the comparison between inferred genomic and cDNA topologies could be detected.</p> <p>Conclusions</p> <p>Our findings by the here reported <it>in silico</it> and <it>in vivo</it> computer simulation system seem to strongly suggest that editing sites contribute in the generation of misleading phylogenetic trees if the analyzed mitochondrial gene sequence is highly edited (higher than 3.0%) and reduced in length (shorter than 500 bp).</p> <p>In the current lack of direct experimental evidence the results presented here encourage, thus, the use of genomic mitochondrial rather than cDNA sequences for reconstructing phylogenetic events in land plants.</p

    Biparental inheritance of plastidial and mitochondrial DNA and hybrid variegation in Pelargonium

    Get PDF
    Plastidial (pt) and mitochondrial (mt) genes usually show maternal inheritance. Non-Mendelian, biparental inheritance of plastids was first described by Baur (Z Indukt Abstamm Vererbungslehre 1:330–351, 1909) for crosses between Pelargonium cultivars. We have analyzed the inheritance of pt and mtDNA by examining the progeny from reciprocal crosses of Pelargoniumzonale and P. inquinans using nucleotide sequence polymorphisms of selected pt and mt genes. Sequence analysis of the progeny revealed biparental inheritance of both pt and mtDNA. Hybrid plants exhibited variegation: our data demonstrate that the inquinans chloroplasts, but not the zonale chloroplasts bleach out, presumably due to incompatibility of the former with the hybrid nuclear genome. Different distribution of maternal and paternal sequences could be observed in different sectors of the same leaf, in different leaves of the same plant, and in different plants indicating random segregation and sorting-out of maternal and paternal plastids and mitochondria in the hybrids. The substantial transmission of both maternal and paternal mitochondria to the progeny turns Pelargonium into a particular interesting subject for studies on the inheritance, segregation and recombination of mt genes
    corecore