3,547 research outputs found

    The Social and Political Dimensions of the Ebola Response: Global Inequality, Climate Change, and Infectious Disease

    Get PDF
    The 2014 Ebola crisis has highlighted public-health vulnerabilities in Liberia, Sierra Leone, and Guinea – countries ravaged by extreme poverty, deforestation and mining-related disruption of livelihoods and ecosystems, and bloody civil wars in the cases of Liberia and Sierra Leone. Ebola’s emergence and impact are grounded in the legacy of colonialism and its creation of enduring inequalities within African nations and globally, via neoliberalism and the Washington Consensus. Recent experiences with new and emerging diseases such as SARS and various strains of HN influenzas have demonstrated the effectiveness of a coordinated local and global public health and education-oriented response to contain epidemics. To what extent is international assistance to fight Ebola strengthening local public health and medical capacity in a sustainable way, so that other emerging disease threats, which are accelerating with climate change, may be met successfully? This chapter considers the wide-ranging socio-political, medical, legal and environmental factors that have contributed to the rapid spread of Ebola, with particular emphasis on the politics of the global and public health response and the role of gender, social inequality, colonialism and racism as they relate to the mobilization and establishment of the public health infrastructure required to combat Ebola and other emerging diseases in times of climate change

    Увеличение темпов прироста запасов углеводородов с помощью инновационных технологий на примере Омской области

    Get PDF
    Проведен анализ перспектив нефтегазоносности Омской области на основе данных инновационной технологии квантово-оптической фильтрации космоснимков. Приведены физические принципы технологии квантово-оптической фильтрации. На примере Омской области показана эффективность применения технологии квантово-оптической фильтрации при решении задачи повышения темпов прироста запасов углеводородного сырья

    Reanalysis of cancer mortality in Japanese A-bomb survivors exposed to low doses of radiation: bootstrap and simulation methods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The International Commission on Radiological Protection (ICRP) recommended annual occupational dose limit is 20 mSv. Cancer mortality in Japanese A-bomb survivors exposed to less than 20 mSv external radiation in 1945 was analysed previously, using a latency model with non-linear dose response. Questions were raised regarding statistical inference with this model.</p> <p>Methods</p> <p>Cancers with over 100 deaths in the 0 - 20 mSv subcohort of the 1950-1990 Life Span Study are analysed with Poisson regression models incorporating latency, allowing linear and non-linear dose response. Bootstrap percentile and Bias-corrected accelerated (BCa) methods and simulation of the Likelihood Ratio Test lead to Confidence Intervals for Excess Relative Risk (ERR) and tests against the linear model.</p> <p>Results</p> <p>The linear model shows significant large, positive values of ERR for liver and urinary cancers at latencies from 37 - 43 years. Dose response below 20 mSv is strongly non-linear at the optimal latencies for the stomach (11.89 years), liver (36.9), lung (13.6), leukaemia (23.66), and pancreas (11.86) and across broad latency ranges. Confidence Intervals for ERR are comparable using Bootstrap and Likelihood Ratio Test methods and BCa 95% Confidence Intervals are strictly positive across latency ranges for all 5 cancers. Similar risk estimates for 10 mSv (lagged dose) are obtained from the 0 - 20 mSv and 5 - 500 mSv data for the stomach, liver, lung and leukaemia. Dose response for the latter 3 cancers is significantly non-linear in the 5 - 500 mSv range.</p> <p>Conclusion</p> <p>Liver and urinary cancer mortality risk is significantly raised using a latency model with linear dose response. A non-linear model is strongly superior for the stomach, liver, lung, pancreas and leukaemia. Bootstrap and Likelihood-based confidence intervals are broadly comparable and ERR is strictly positive by bootstrap methods for all 5 cancers. Except for the pancreas, similar estimates of latency and risk from 10 mSv are obtained from the 0 - 20 mSv and 5 - 500 mSv subcohorts. Large and significant cancer risks for Japanese survivors exposed to less than 20 mSv external radiation from the atomic bombs in 1945 cast doubt on the ICRP recommended annual occupational dose limit.</p

    Borrelia recurrentis employs a novel multifunctional surface protein with anti-complement, anti-opsonic and invasive potential to escape innate immunity

    Get PDF
    Borrelia recurrentis, the etiologic agent of louse-borne relapsing fever in humans, has evolved strategies, including antigenic variation, to evade immune defence, thereby causing severe diseases with high mortality rates. Here we identify for the first time a multifunctional surface lipoprotein of B. recurrentis, termed HcpA, and demonstrate that it binds human complement regulators, Factor H, CFHR-1, and simultaneously, the host protease plasminogen. Cell surface bound factor H was found to retain its activity and to confer resistance to complement attack. Moreover, ectopic expression of HcpA in a B. burgdorferi B313 strain, deficient in Factor H binding proteins, protected the transformed spirochetes from complement-mediated killing. Furthermore, HcpA-bound plasminogen/plasmin endows B. recurrentis with the potential to resist opsonization and to degrade extracellular matrix components. Together, the present study underscores the high virulence potential of B. recurrentis. The elucidation of the molecular basis underlying the versatile strategies of B. recurrentis to escape innate immunity and to persist in human tissues, including the brain, may help to understand the pathological processes underlying louse-borne relapsing fever

    Catching a gently thrown ball

    Get PDF
    Several studies have shown that people can catch a ball even if it is visible only during part of its flight. Here, we examine how well they can do so. We measured the movements of a ball and of the hands of both the thrower and the catcher during one-handed underarm throwing and catching. The catcher's sight was occluded for 250 ms at random moments. Participants could catch most balls without fumbling. They only really had difficulties if vision was occluded before the ball was released and was restored less than 200 ms before the catch. In such cases, it was impossible to accurately predict the ball's trajectory from motion of the ball and of the thrower's hand before the occlusion, and there was not enough time to adjust the catching movement after vision was restored. Even at these limits, people caught most balls quite adequately. © 2010 Springer-Verlag

    A vine copula mixed effect model for trivariate meta-analysis of diagnostic test accuracy studies accounting for disease prevalence

    Get PDF
    A bivariate copula mixed model has been recently proposed to synthesize diagnostic test accuracy studies and it has been shown that it is superior to the standard generalized linear mixed model in this context. Here, we call trivariate vine copulas to extend the bivariate meta-analysis of diagnostic test accuracy studies by accounting for disease prevalence. Our vine copula mixed model includes the trivariate generalized linear mixed model as a special case and can also operate on the original scale of sensitivity, specificity, and disease prevalence. Our general methodology is illustrated by re-analyzing the data of two published meta-analyses. Our study suggests that there can be an improvement on trivariate generalized linear mixed model in fit to data and makes the argument for moving to vine copula random effects models especially because of their richness, including reflection asymmetric tail dependence, and computational feasibility despite their three dimensionality

    Haptic search with finger movements: using more fingers does not necessarily reduce search times

    Get PDF
    Two haptic serial search tasks were used to investigate how the separations between items, and the number of fingers used to scan them, influence the search time and search strategy. In both tasks participants had to search for a target (cross) between a fixed number of non-targets (circles). The items were placed in a straight line. The target’s position was varied within blocks, and inter-item separation was varied between blocks. In the first experiment participants used their index finger to scan the display. As expected, search time depended on target position as well as on item separation. For larger separations participants’ movements were jerky, resembling ‘saccades’ and ‘fixations’, while for the shortest separation the movements were smooth. When only considering time in contact with an item, search times were the same for all separation conditions. Furthermore, participants never continued their movement after they encountered the target. These results suggest that participants did not use the time during which they were moving between the items to process information about the items. The search times were a little shorter than those in a static search experiment (Overvliet et al. in Percept Psychophys, 2007a), where multiple items were presented to the fingertips simultaneously. To investigate whether this is because the finger was moving or because only one finger was stimulated, we conducted a second experiment in which we asked participants to put three fingers in line and use them together to scan the items. Doing so increased the time in contact with the items for all separations, so search times were presumably longer in the static search experiment because multiple fingers were involved. This may be caused by the time that it takes to switch from one finger to the other

    The Multiscale Systems Immunology project: software for cell-based immunological simulation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Computer simulations are of increasing importance in modeling biological phenomena. Their purpose is to predict behavior and guide future experiments. The aim of this project is to model the early immune response to vaccination by an agent based immune response simulation that incorporates realistic biophysics and intracellular dynamics, and which is sufficiently flexible to accurately model the multi-scale nature and complexity of the immune system, while maintaining the high performance critical to scientific computing.</p> <p>Results</p> <p>The Multiscale Systems Immunology (MSI) simulation framework is an object-oriented, modular simulation framework written in C++ and Python. The software implements a modular design that allows for flexible configuration of components and initialization of parameters, thus allowing simulations to be run that model processes occurring over different temporal and spatial scales.</p> <p>Conclusion</p> <p>MSI addresses the need for a flexible and high-performing agent based model of the immune system.</p
    corecore