393 research outputs found

    How large can the electron to proton mass ratio be in Particle-In-Cell simulations of unstable systems?

    Full text link
    Particle-in-cell (PIC) simulations are widely used as a tool to investigate instabilities that develop between a collisionless plasma and beams of charged particles. However, even on contemporary supercomputers, it is not always possible to resolve the ion dynamics in more than one spatial dimension with such simulations. The ion mass is thus reduced below 1836 electron masses, which can affect the plasma dynamics during the initial exponential growth phase of the instability and during the subsequent nonlinear saturation. The goal of this article is to assess how far the electron to ion mass ratio can be increased, without changing qualitatively the physics. It is first demonstrated that there can be no exact similarity law, which balances a change of the mass ratio with that of another plasma parameter, leaving the physics unchanged. Restricting then the analysis to the linear phase, a criterion allowing to define a maximum ratio is explicated in terms of the hierarchy of the linear unstable modes. The criterion is applied to the case of a relativistic electron beam crossing an unmagnetized electron-ion plasma.Comment: To appear in Physics of Plasma

    Intermediate quantum maps for quantum computation

    Full text link
    We study quantum maps displaying spectral statistics intermediate between Poisson and Wigner-Dyson. It is shown that they can be simulated on a quantum computer with a small number of gates, and efficiently yield information about fidelity decay or spectral statistics. We study their matrix elements and entanglement production, and show that they converge with time to distributions which differ from random matrix predictions. A randomized version of these maps can be implemented even more economically, and yields pseudorandom operators with original properties, enabling for example to produce fractal random vectors. These algorithms are within reach of present-day quantum computers.Comment: 4 pages, 4 figures, research done at http://www.quantware.ups-tlse.fr

    Multiparticle Entanglement in the Lipkin-Meshkov-Glick Model

    Full text link
    The multiparticle entanglement in the Lipkin-Meshkov-Glick model has been discussed extensively in this paper. Measured by the global entanglement and its generalization, our calculation shows that the multiparticle entanglement can faithfully detect quantum phase transitions. For an antiferromagnetic case the multiparticle entanglement reaches the maximum at the transition point, whereas for ferromagnetic coupling, two different behaviors of multiparticle entanglement can be identified, dependent on the anisotropic parameter in the coupling.Comment: 7 pages and 5 figure

    Quantum Logic for Trapped Atoms via Molecular Hyperfine Interactions

    Full text link
    We study the deterministic entanglement of a pair of neutral atoms trapped in an optical lattice by coupling to excited-state molecular hyperfine potentials. Information can be encoded in the ground-state hyperfine levels and processed by bringing atoms together pair-wise to perform quantum logical operations through induced electric dipole-dipole interactions. The possibility of executing both diagonal and exchange type entangling gates is demonstrated for two three-level atoms and a figure of merit is derived for the fidelity of entanglement. The fidelity for executing a CPHASE gate is calculated for two 87Rb atoms, including hyperfine structure and finite atomic localization. The main source of decoherence is spontaneous emission, which can be minimized for interaction times fast compared to the scattering rate and for sufficiently separated atomic wavepackets. Additionally, coherent couplings to states outside the logical basis can be constrained by the state dependent trapping potential.Comment: Submitted to Physical Review

    Lower bounds on entanglement measures from incomplete information

    Full text link
    How can we quantify the entanglement in a quantum state, if only the expectation value of a single observable is given? This question is of great interest for the analysis of entanglement in experiments, since in many multiparticle experiments the state is not completely known. We present several results concerning this problem by considering the estimation of entanglement measures via Legendre transforms. First, we present a simple algorithm for the estimation of the concurrence and extensions thereof. Second, we derive an analytical approach to estimate the geometric measure of entanglement, if the diagonal elements of the quantum state in a certain basis are known. Finally, we compare our bounds with exact values and other estimation methods for entanglement measures.Comment: 9 pages, 4 figures, v2: final versio

    On fault-tolerance with noisy and slow measurements

    Full text link
    It is not so well-known that measurement-free quantum error correction protocols can be designed to achieve fault-tolerant quantum computing. Despite the potential advantages of using such protocols in terms of the relaxation of accuracy, speed and addressing requirements on the measurement process, they have usually been overlooked because they are expected to yield a very bad threshold as compared to error correction protocols which use measurements. Here we show that this is not the case. We design fault-tolerant circuits for the 9 qubit Bacon-Shor code and find a threshold for gates and preparation of p(p,g)thresh=3.76×10−5p_{(p,g) thresh}=3.76 \times 10^{-5} (30% of the best known result for the same code using measurement based error correction) while admitting up to 1/3 error rates for measurements and allocating no constraints on measurement speed. We further show that demanding gate error rates sufficiently below the threshold one can improve the preparation threshold to p(p)thresh=1/3p_{(p)thresh} = 1/3. We also show how these techniques can be adapted to other Calderbank-Shor-Steane codes.Comment: 11 pages, 7 figures. v3 has an extended exposition and several simplifications that provide for an improved threshold value and resource overhea

    Efficient generation of random multipartite entangled states using time optimal unitary operations

    Get PDF
    We review the generation of random pure states using a protocol of repeated two qubit gates. We study the dependence of the convergence to states with Haar multipartite entanglement distribution. We investigate the optimal generation of such states in terms of the physical (real) time needed to apply the protocol, instead of the gate complexity point of view used in other works. This physical time can be obtained, for a given Hamiltonian, within the theoretical framework offered by the quantum brachistochrone formalism. Using an anisotropic Heisenberg Hamiltonian as an example, we find that different optimal quantum gates arise according to the optimality point of view used in each case. We also study how the convergence to random entangled states depends on different entanglement measures.Comment: 5 pages, 2 figures. New title, improved explanation of the algorithm. To appear in Phys. Rev.

    Entanglement Measures for Intermediate Separability of Quantum States

    Full text link
    We present a family of entanglement measures R_m which act as indicators for separability of n-qubit quantum states into m subsystems for arbitrary 2 \leq m \leq n. The measure R_m vanishes if the state is separable into m subsystems, and for m = n it gives the Meyer-Wallach measure while for m = 2 it reduces, in effect, to the one introduced recently by Love et al. The measures R_m are evaluated explicitly for the GHZ state and the W state (and its modifications, the W_k states) to show that these globally entangled states exhibit rather distinct behaviors under the measures, indicating the utility of the measures R_m for characterizing globally entangled states as well.Comment: 8 pages, 8 figure

    Multi-partite entanglement and quantum phase transition in the one-, two-, and three-dimensional transverse field Ising model

    Full text link
    In this paper we consider the quantum phase transition in the Ising model in the presence of a transverse field in one, two and three dimensions from a multi-partite entanglement point of view. Using \emph{exact} numerical solutions, we are able to study such systems up to 25 qubits. The Meyer-Wallach measure of global entanglement is used to study the critical behavior of this model. The transition we consider is between a symmetric GHZ-like state to a paramagnetic product-state. We find that global entanglement serves as a good indicator of quantum phase transition with interesting scaling behavior. We use finite-size scaling to extract the critical point as well as some critical exponents for the one and two dimensional models. Our results indicate that such multi-partite measure of global entanglement shows universal features regardless of dimension dd. Our results also provides evidence that multi-partite entanglement is better suited for the study of quantum phase transitions than the much studied bi-partite measures.Comment: 7 pages, 8 Figures. To appear in Physical Review
    • …
    corecore