How can we quantify the entanglement in a quantum state, if only the
expectation value of a single observable is given? This question is of great
interest for the analysis of entanglement in experiments, since in many
multiparticle experiments the state is not completely known. We present several
results concerning this problem by considering the estimation of entanglement
measures via Legendre transforms. First, we present a simple algorithm for the
estimation of the concurrence and extensions thereof. Second, we derive an
analytical approach to estimate the geometric measure of entanglement, if the
diagonal elements of the quantum state in a certain basis are known. Finally,
we compare our bounds with exact values and other estimation methods for
entanglement measures.Comment: 9 pages, 4 figures, v2: final versio