262 research outputs found

    Consequences of altered eicosanoid patterns for nociceptive processing in mPGES-1-deficient mice

    Get PDF
    Cyclooxygenase-2 (COX-2)-dependent prostaglandin (PG) E2 synthesis in the spinal cord plays a major role in the development of inflammatory hyperalgesia and allodynia. Microsomal PGE2 synthase-1 (mPGES-1) isomerizes COX-2-derived PGH2 to PGE2. Here, we evaluated the effect of mPGES-1-deficiency on the noci-ceptive behavior in various models of nociception that depend on PGE2 synthesis. Surprisingly, in the COX-2-dependent zymosan-evoked hyperalgesia model, the nociceptive behavior was not reduced in mPGES-1-deficient mice despite a marked decrease of the spinal PGE2 synthesis. Similarly, the nociceptive behavior was unaltered in mPGES-1-deficient mice in the formalin test. Importantly, spinal cords and primary spinal cord cells derived from mPGES-1-deficient mice showed a redirection of the PGE2 synthesis to PGD2, PGF2α and 6-keto-PGF1α (stable metabolite of PGI2). Since the latter prostaglandins serve also as mediators of noci-ception they may compensate the loss of PGE2 synthesis in mPGES-1-deficient mice

    Evaluation of adoption potential of modern technologies in potato value chain by smallholder farmers in Kenya: Nyandarua County pilot case study.

    Get PDF
    In Kenya, smallholder potato farmers endeavor to increase their production through various approaches, most commonly by expanding areas under production and repeatedly planting potato on the same site, with the latter resulting in build-up of diseases. Compounded with limited access to options to improve productivity, these farmers yield less than 10 t ha, much below realistic yields of 20 to 30 t ha. In an attempt to address these constraints, a study in the framework of the pilot project Potato Initiative Africa lead by International Potato Center (CIP) evaluated modern interventions to improve yields and reduce harvest and post-harvest losses along the production chain

    Computational Controversy

    Full text link
    Climate change, vaccination, abortion, Trump: Many topics are surrounded by fierce controversies. The nature of such heated debates and their elements have been studied extensively in the social science literature. More recently, various computational approaches to controversy analysis have appeared, using new data sources such as Wikipedia, which help us now better understand these phenomena. However, compared to what social sciences have discovered about such debates, the existing computational approaches mostly focus on just a few of the many important aspects around the concept of controversies. In order to link the two strands, we provide and evaluate here a controversy model that is both, rooted in the findings of the social science literature and at the same time strongly linked to computational methods. We show how this model can lead to computational controversy analytics that have full coverage over all the crucial aspects that make up a controversy.Comment: In Proceedings of the 9th International Conference on Social Informatics (SocInfo) 201

    Psychometrische Prüfung des deutschsprachigen „Neurologischen Fragebogens zur Müdigkeit bei Multipler Sklerose (NFI-MS-G)“ bei Rehabilitanden mit Multipler Sklerose (Psychometric Evaluation of the ‘German Neurological Fatigue Index for Multiple Sclerosis (NFI-MS-G)’ in a Sample of Rehabilitation Patients with Multiple Sclerosis)

    Get PDF
    Purpose The purpose of this study was to provide a patient-reported outcome measure for people with multiple sclerosis (MS) comprehensively reflecting the construct of fatigue and developed upon the assumptions of the Rasch model. The Neurological Fatigue Index – Multiple Sclerosis (NFI-MS) is based on both a medical and patient-described symptom framework of fatigue and has been validated. Therefore, in this study the German version of the NFI-MS (NFI-MS-G) consisting of a physical and cognitive subscale and a summary scale was validated. Method In this bi-centre-study, 309 people with MS undergoing outpatient rehabilitation or being≥2 months before or after their inpatient rehabilitation completed the German NFI-MS-G twice within 14–21 days together with other questionnaires. Correlation with established questionnaires and Rasch analysis were used for its validation. Additionally, psychometric properties of known-groups validity, internal consistency, test-retest reliability, measurement precision and readability were tested. Finally, the English NFI-MS and German NFI-MS-G were compared with each other to equate the language versions. Results The NFI-MS-G showed good internal construct validity, convergent and known-groups validity and internal consistency (Cronbach’s alpha 0.84–0.93). The physical subscale showed minor local dependencies between items 1 and 7, 2 and 3 and 4 to 6, that could be treated by combining the respective items to testlets. Unidimensionality was found for the physical and cognitive subscales but not for the summary scale. Replacing the summary scale, a 2-domains subtest measuring the higher-order construct of fatigue was created. Good test-retest reliability (Lin’s concordance correlation coefficient of 0.86–0.90) and low floor and ceiling effects were demonstrated. The NFI-MS-G was found easily readable and invariant across groups of gender, age, disease duration, timepoint and centre. Conclusion The German version of the NFI-MS comprehensively represents the construct of fatigue and has adequate psychometric properties. The German version differs from the English original version with respect to a lack of unidimensionality of the summary scale and minor local dependencies of the physical subscale that could be canceled out using a testlet analysis

    Regulation of Translation in Haloarchaea: 5′- and 3′-UTRs Are Essential and Have to Functionally Interact In Vivo

    Get PDF
    Recently a first genome-wide analysis of translational regulation using prokaryotic species had been performed which revealed that regulation of translational efficiency plays an important role in haloarchaea. In fact, the fractions of genes under differential growth phase-dependent translational control in the two species Halobacterium salinarum and Haloferax volcanii were as high as in eukaryotes. However, nothing is known about the mechanisms of translational regulation in archaea. Therefore, two genes exhibiting opposing directions of regulation were selected to unravel the importance of untranslated regions (UTRs) for differential translational control in vivo

    Diffusion tensor imaging of Parkinson's disease, multiple system atrophy and progressive supranuclear palsy: a tract-based spatial statistics study

    Get PDF
    Although often clinically indistinguishable in the early stages, Parkinson's disease (PD), Multiple System Atrophy (MSA) and Progressive Supranuclear Palsy (PSP) have distinct neuropathological changes. The aim of the current study was to identify white matter tract neurodegeneration characteristic of each of the three syndromes. Tract-based spatial statistics (TBSS) was used to perform a whole-brain automated analysis of diffusion tensor imaging (DTI) data to compare differences in fractional anisotropy (FA) and mean diffusivity (MD) between the three clinical groups and healthy control subjects. Further analyses were conducted to assess the relationship between these putative indices of white matter microstructure and clinical measures of disease severity and symptoms. In PSP, relative to controls, changes in DTI indices consistent with white matter tract degeneration were identified in the corpus callosum, corona radiata, corticospinal tract, superior longitudinal fasciculus, anterior thalamic radiation, superior cerebellar peduncle, medial lemniscus, retrolenticular and anterior limb of the internal capsule, cerebral peduncle and external capsule bilaterally, as well as the left posterior limb of the internal capsule and the right posterior thalamic radiation. MSA patients also displayed differences in the body of the corpus callosum corticospinal tract, cerebellar peduncle, medial lemniscus, anterior and superior corona radiata, posterior limb of the internal capsule external capsule and cerebral peduncle bilaterally, as well as the left anterior limb of the internal capsule and the left anterior thalamic radiation. No significant white matter abnormalities were observed in the PD group. Across groups, MD correlated positively with disease severity in all major white matter tracts. These results show widespread changes in white matter tracts in both PSP and MSA patients, even at a mid-point in the disease process, which are not found in patients with PD

    Phenotypic drug screen uncovers the metabolic GCH1/BH4 pathway as key regulator of EGFR/KRAS-mediated neuropathic pain and lung cancer

    Get PDF
    Increased tetrahydrobiopterin (BH4) generated in injured sensory neurons contributes to increased pain sensitivity and its persistence. GTP cyclohydrolase 1 (GCH1) is the rate-limiting enzyme in the de novo BH4 synthetic pathway, and human single-nucleotide polymorphism studies, together with mouse genetic modeling, have demonstrated that decreased GCH1 leads to both reduced BH4 and pain. However, little is known about the regulation of Gch1 expression upon nerve injury and whether this could be modulated as an analgesic therapeutic intervention. We performed a phenotypic screen using about 1000 bioactive compounds, many of which are target-annotated FDA-approved drugs, for their effect on regulating Gch1 expression in rodent injured dorsal root ganglion neurons. From this approach, we uncovered relevant pathways that regulate Gch1 expression in sensory neurons. We report that EGFR/KRAS signaling triggers increased Gch1 expression and contributes to neuropathic pain; conversely, inhibiting EGFR suppressed GCH1 and BH4 and exerted analgesic effects, suggesting a molecular link between EGFR/KRAS and pain perception. We also show that GCH1/BH4 acts downstream of KRAS to drive lung cancer, identifying a potentially druggable pathway. Our screen shows that pharmacologic modulation of GCH1 expression and BH4 could be used to develop pharmacological treatments to alleviate pain and identified a critical role for EGFR-regulated GCH1/BH4 expression in neuropathic pain and cancer in rodents
    • …
    corecore