18 research outputs found

    CMB-S4: Forecasting Constraints on Primordial Gravitational Waves

    Full text link
    CMB-S4---the next-generation ground-based cosmic microwave background (CMB) experiment---is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semi-analytic projection tool, targeted explicitly towards optimizing constraints on the tensor-to-scalar ratio, rr, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2--3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments given a desired scientific goal. To form a closed-loop process, we couple this semi-analytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r>0.003r > 0.003 at greater than 5σ5\sigma, or, in the absence of a detection, of reaching an upper limit of r<0.001r < 0.001 at 95%95\% CL.Comment: 24 pages, 8 figures, 9 tables, submitted to ApJ. arXiv admin note: text overlap with arXiv:1907.0447

    Potencijalna upotreba izotopa vaĆŸnih za okoliĆĄ u ispitivanju migracije onečiơćujućih tvari

    Get PDF
    This article presents the use of natural abundance stable isotope (hydrogen, carbon, nitrogen, oxygen, chlorine) analysis data as a tool for providing important information about the origin of contaminants, the contribution of different sources to a multi-source plume, characterisation of their complex transport (rate and mechanisms) and for evaluating the success of contaminated site remediation. Isotopic signatures of contaminants are useful tracers of their sources, while isotopic fractionation can be used to quantitatively assess the progress of an environmental process such as biodegradation. This new isotopic approach is reliable and can offer more information than traditional techniques in pollutant migration studies, particularly after waste disposal. During biological degradation of any organic compound, molecules containing lighter isotopes are degraded, and the portion of heavier isotopes in the substrate is increased, identifying specific microbial roles in biogeochemical cycling. Since isotopic fractionation is proportional to degradation, depending on the type of contamination, a microbial degradation of 50 % to 99 % of the initial concentration can be quantified using isotope ratio measurements.Cilj ovog rada je da se prikaĆŸe koriĆĄtenje podataka analize prirodne obilnosti stabilnih izotopa (vodika, ugljika, duĆĄika, kisika i klora) kao alata za dobivanje vaĆŸnih informacija o porijeklu onečiơćujućih tvari, doprinosu različitih multikomponentnih onečiơćivača, karakterizaciji njihova kompleksnog transporta (brzine i mehanizma) i praćenja uspjeha remedijacije onečiơćenih mjesta. Izotopski sadrĆŸaji onečiơćujućih tvari koriste se kao traseri za određivanje njihovih izvora, dok se izotopsko frakcioniranje moĆŸe iskoristiti za kvantitativnu procjenu toka procesa kao ĆĄto je biodegradacija. Takav nov izotopski pristup je pouzdan i nudi viĆĄe informacija od tradicionalnih tehnika kontrole putovanja onečiơćivala, napose nakon odlaganja opasnog otpada na zemljiĆĄtu. Za vrijeme biodegradacije nekog organskog spoje molekule koje sadrĆŸavaju lake izotope lakĆĄe se degradiraju, a dio teĆŸih izotopa u supstratu se povećava, ĆĄto upućuje na mikrobioloĆĄku ulogu u biokemijskom ciklusu. Kako je izotopsko frakcioniranje proporcionalno degradaciji zavisno od tipa onečiơćenja, koriĆĄtenjem podataka mjerenja izotopskih odnosa moĆŸe se procijeniti mikrobioloĆĄka degradacija od 50 % do 99 % od početne koncentracije

    CMB-S4: Forecasting Constraints on Primordial Gravitational Waves

    Get PDF
    Abstract: CMB-S4—the next-generation ground-based cosmic microwave background (CMB) experiment—is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, r, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2–3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r > 0.003 at greater than 5σ, or in the absence of a detection, of reaching an upper limit of r < 0.001 at 95% CL

    Arsenic Binding to Proteins

    No full text

    CMB-S4: Forecasting Constraints on Primordial Gravitational Waves

    No full text
    CMB-S4 - the next-generation ground-based cosmic microwave background (CMB) experiment - is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, r, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2-3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r > 0.003 at greater than 5σ, or in the absence of a detection, of reaching an upper limit of r < 0.001 at 95% CL
    corecore