90 research outputs found

    Convective heat transfer in rotating, circular channels

    Get PDF
    Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 33).Nusselt number values for flow in a rotating reference frame are obtained through computational fluid dynamic (CFD) analysis for Rossby numbers Ro ~1-4 and Reynolds numbers Re ~1,000-2,000. The heat-transfer model is first validated according to Nusselt number correlations for laminar, developing flow in circular tubes and by friction factor correlations for fully developed flow in circular tubes rotating at constant angular velocity about an orthogonal axis. The data show heat-transfer enhancement for increasing rotational speeds, as predicted through secondary flows caused by Coriolis forces. Moreover, the heat-transfer enhancement is found to be greater than the resulting increase in friction losses due to secondary flows.by Brenna Elizabeth Hogan.S.B

    The IeDEA Harmonist Data Toolkit: A Data Quality and Data Sharing Solution for a Global HIV Research Consortium.

    Get PDF
    We describe the design, implementation, and impact of a data harmonization, data quality checking, and dynamic report generation application in an international observational HIV research network. The IeDEA Harmonist Data Toolkit is a web-based application written in the open source programming language R, employs the R/Shiny and RMarkdown packages, and leverages the REDCap data collection platform for data model definition and user authentication. The Toolkit performs data quality checks on uploaded datasets, checks for conformance with the network's common data model, displays the results both interactively and in downloadable reports, and stores approved datasets in secure cloud storage for retrieval by the requesting investigator. Including stakeholders and users in the design process was key to the successful adoption of the application. A survey of regional data managers as well as initial usage metrics indicate that the Toolkit saves time and results in improved data quality, with a 61% mean reduction in number of error records in a dataset. The generalized application design allows the Toolkit to be easily adapted to other research networks

    Association between community socioeconomic factors, animal feeding operations, and campylobacteriosis incidence rates: Foodborne Diseases Active Surveillance Network (FoodNet), 2004–2010

    Get PDF
    Campylobacter is a leading cause of foodborne illness in the United States. Campylobacter infections have been associated with individual risk factors, such as the consumption of poultry and raw milk. Recently, a Maryland-based study identified community socioeconomic and environmental factors that are also associated with campylobacteriosis rates. However, no previous studies have evaluated the association between community risk factors and campylobacteriosis rates across multiple U.S. states. We obtained Campylobacter case data (2004–2010; n = 40,768) from the Foodborne Diseases Active Surveillance Network (FoodNet) and socioeconomic and environmental data from the 2010 Census of Population and Housing, the 2011 American Community Survey, and the 2007 U.S. Census of Agriculture. We linked data by zip code and derived incidence rate ratios using negative binomial regression models. Community socioeconomic and environmental factors were associated with both lower and higher campylobacteriosis rates. Zip codes with higher percentages of African Americans had lower rates of campylobacteriosis (incidence rate ratio [IRR]) = 0.972; 95 % confidence interval (CI) = 0.970,0.974). In Georgia, Maryland, and Tennessee, three leading broiler chicken producing states, zip codes with broiler operations had incidence rates that were 22 % (IRR = 1.22; 95 % CI = 1.03,1.43), 16 % (IRR = 1.16; 95 % CI = 0.99,1.37), and 35 % (IRR = 1.35; 95 % CI = 1.18,1.53) higher, respectively, than those of zip codes without broiler operations. In Minnesota and New York FoodNet counties, two top dairy producing areas, zip codes with dairy operations had significantly higher campylobacteriosis incidence rates (IRR = 1.37; 95 % CI = 1.22, 1.55; IRR = 1.19; 95 % CI = 1.04,1.36). Community socioeconomic and environmental factors are important to consider when evaluating the relationship between possible risk factors and Campylobacter infection.https://doi.org/10.1186/s12879-016-1686-

    US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report

    Get PDF
    This white paper summarizes the workshop "U.S. Cosmic Visions: New Ideas in Dark Matter" held at University of Maryland on March 23-25, 2017.Comment: 102 pages + reference

    Etude numérique de la microcirculation sanguine et de ses interactions avec l'endothélium

    Get PDF
    This thesis is devoted to the study of the interactions between red blood cells (RBCs) and the endothelium, the monolayer of cells lining blood vessels. The endothelium and RBCs have been shown to be active participants in various processes in the vascular system, and their interactions trigger biochemical signalling by mechanical (wall shear stress) and chemical (signalling molecules) means. We first investigate the role of RBCs, including pathological conditions, in creating time- and space-varying shear stress on the endothelium. Shear stress has been shown to be a critical element in biochemical signalling from the endothelium. In addition, as it has been shown that the endothelium is undulating due to the individual endothelial cells comprising it, we take this into account in our model of the geometry of the vessel wall. We find that this undulation affects the dynamics of the RBCs in the flow and the wall shear stress. We briefly explore how the deformability of a single RBC affects its trajectory in undulating channels, inspired by the idea behind deterministic lateral displacement devices (DLDs) which exploit the differing trajectories of particles based upon their sizes to separate them in flow. We also investigate the effect of suspensions of RBCs in undulating channels on rheological properties and wall shear stress. Finally, we address the chemical interactions by building a numerical model with the lattice Boltzmann-immersed boundary method (LB-IBM) to solve advection-diffusion of solute released from moving, deformable particles. Oxygen and adenosine triphosphate (ATP) are both released by RBCs and are advected and diffused in the flow and uptaken by the endothelium and serve as critical signalling factors in inflammation and vasodilation. We find that the morphology of RBCs will affect the residence time and dilution of the chemical species upon contact with the wall. Together, these elements lead us towards the development of a model capable of simulating vital processes in the vascular system which result from local interactions of individual components.Cette thèse porte sur l’étude des interactions entre les globules rouges (GRs)et l’endothélium, la couche des cellules qui délimite les vaisseaux sanguins.Il a été démontré que l’endothélium et les GRs jouent des rôles actifs dans divers processus du système vasculaire, et leurs interactions produisent un signal bio chimique grâce à des moyens à la fois chimiques (molécules de signalisation) et mécaniques (taux de cisaillement sur les parois). D’abord,nous étudions le rôle des GRs, y compris dans des conditions pathologiques, dans la création de contraintes de cisaillement spatialement et temporellement dynamiques sur l’endothélium. Il a été montré que les contraintes de cisaillement constituaient un élément critique dans le déclenchement d’un signal bio mécanique depuis l’endothélium. Par ailleurs, étant donné qu’il a été montré que les parois des vaisseaux sanguins ondulent en raison des cellules endothéliales individuelles qui le composent, nous avons intégré à notre modélisation cette géométrie. On trouve que cette ondulation affecte la dynamique des GRs dans l’écoulement ainsi que le taux de cisaillement sur les parois. Nous étudions rapidement dans quelle mesure la déformabilité d’un GR affecte sa trajectoire dans un vaisseau ondulé. Pour cela, nous nous inspirons du processus de fonctionnement un appareil de déplacement latéral déterministe (DLD) qui utilise les variations de trajectoires des particules en fonction de leur taille pour les séparer dans l’écoulement. Nous étudions par ailleurs l’effet des suspensions de GRs sur les caractéristiques rhéologiques et les contraintes de cisaillement sur la paroi du vaisseau.Finalement, nous nous adressons à les interaction chimiques en développons un modèle numérique avec la méthode de Boltzmann sur réseaux-limite immergée (LB-IBM) pour résoudre la diffusion et l’advectiond’un soluté libéré par un particule en mouvement et déformable. L’oxygène et l’adénosine triphosphate (ATP) sont toutes les deux libérées par les GRs,se diffusent dans l'écoulement, et sont absorbées par l’endothélium. Ils représentent des facteurs de signalisation critiques pour les processus de l’inflammation et vasodilatation. Nous montrons que la morphologie des GRs affectera le temps de résidence et la dilution des espèces chimiques lorsqu’elles rentreront en contact avec la paroi du vaisseau. Ensemble, ces éléments nous conduisent vers la développement d’un modèle capable de simuler des processus vitaux du système vasculaire qui résultent d’événements locaux de composants individuels

    ATP Release by Red Blood Cells under Flow: Model and Simulations

    No full text
    ATP is a major player as a signaling molecule in blood microcirculation. It is released by red blood cells (RBCs) when they are subjected to shear stresses large enough to induce a sufficient shape deformation. This prominent feature of chemical response to shear stress and RBC deformation constitutes an important link between vessel geometry, flow conditions, and the mechanical properties of RBCs, which are all contributing factors affecting the chemical signals in the process of vaso-motor modulation of the precapillary vessel networks. Several in vitro experiments have reported on ATP release by RBCs due to mechanical stress. These studies have considered both intact RBCs as well as cells within which suspected pathways of ATP release have been inhibited. This has provided profound insights to help elucidate the basic governing key elements, yet how the ATP release process takes place in the (intermediate) microcirculation zone is not well understood. We propose here an analytical model of ATP release. The ATP concentration is coupled in a consistent way to RBC dynamics. The release of ATP, or the lack thereof, is assumed to depend on both the local shear stress and the shape change of the membrane. The full chemo-mechanical coupling problem is written in a lattice-Boltzmann formulation and solved numerically in different geometries (straight channels and bifurcations mimicking vessel networks) and under two kinds of imposed flows (shear and Poiseuille flows). Our model remarkably reproduces existing experimental results. It also pinpoints the major contribution of ATP release when cells traverse network bifurcations. This study may aid in further identifying the interplay between mechanical properties and chemical signaling processes involved in blood microcirculation

    Shear stress in the microvasculature: influence of red blood cell morphology and endothelial wall undulation

    No full text
    The effect of red blood cells and the undulation of the endothelium on the shear stress in the microvasculature is studied numerically using the lattice Boltzmann-immersed boundary method (LB-IBM). The results demonstrate a significant effect of both the undulation of the endothelium and red blood cells on wall shear stress. Our results also reveal that morphological alterations of red blood cells, as occur in certain pathologies, can significantly affect the values of wall shear stress. The resulting fluctuations in wall shear stress greatly exceed the nominal values, emphasizing the importance of the particulate nature of blood as well as a more realistic description of vessel wall geometry in the study of hemodynamic forces. We find that within the channel widths investigated, which correspond to those found in the microvasculature, the inverse minimum distance normalized to the channel width between the red blood cell and the wall is predictive of the maximum wall shear stress observed in straight channels with a flowing red blood cell. We find that the maximum wall shear stress varies several factors more over a range of capillary numbers (dime

    ATP Release by Red Blood Cells under Flow: Model and Simulations

    No full text
    ATP is a major player as a signaling molecule in blood microcirculation. It is released by red blood cells (RBCs) when they are subjected to shear stresses large enough to induce a sufficient shape deformation. This prominent feature of chemical response to shear stress and RBC deformation constitutes an important link between vessel geometry, flow conditions, and the mechanical properties of RBCs, which are all contributing factors affecting the chemical signals in the process of vaso-motor modulation of the precapillary vessel networks. Several in vitro experiments have reported on ATP release by RBCs due to mechanical stress. These studies have considered both intact RBCs as well as cells within which suspected pathways of ATP release have been inhibited. This has provided profound insights to help elucidate the basic governing key elements, yet how the ATP release process takes place in the (intermediate) microcirculation zone is not well understood. We propose here an analytical model of ATP release. The ATP concentration is coupled in a consistent way to RBC dynamics. The release of ATP, or the lack thereof, is assumed to depend on both the local shear stress and the shape change of the membrane. The full chemo-mechanical coupling problem is written in a lattice-Boltzmann formulation and solved numerically in different geometries (straight channels and bifurcations mimicking vessel networks) and under two kinds of imposed flows (shear and Poiseuille flows). Our model remarkably reproduces existing experimental results. It also pinpoints the major contribution of ATP release when cells traverse network bifurcations. This study may aid in further identifying the interplay between mechanical properties and chemical signaling processes involved in blood microcirculation

    ATP Release by Red Blood Cells under Flow: Model and Simulations

    No full text
    ATP is a major player as a signaling molecule in blood microcirculation. It is released by red blood cells (RBCs) when they are subjected to shear stresses large enough to induce a sufficient shape deformation. This prominent feature of chemical response to shear stress and RBC deformation constitutes an important link between vessel geometry, flow conditions, and the mechanical properties of RBCs, which are all contributing factors affecting the chemical signals in the process of vaso-motor modulation of the precapillary vessel networks. Several in vitro experiments have reported on ATP release by RBCs due to mechanical stress. These studies have considered both intact RBCs as well as cells within which suspected pathways of ATP release have been inhibited. This has provided profound insights to help elucidate the basic governing key elements, yet how the ATP release process takes place in the (intermediate) microcirculation zone is not well understood. We propose here an analytical model of ATP release. The ATP concentration is coupled in a consistent way to RBC dynamics. The release of ATP, or the lack thereof, is assumed to depend on both the local shear stress and the shape change of the membrane. The full chemo-mechanical coupling problem is written in a lattice-Boltzmann formulation and solved numerically in different geometries (straight channels and bifurcations mimicking vessel networks) and under two kinds of imposed flows (shear and Poiseuille flows). Our model remarkably reproduces existing experimental results. It also pinpoints the major contribution of ATP release when cells traverse network bifurcations. This study may aid in further identifying the interplay between mechanical properties and chemical signaling processes involved in blood microcirculation

    ATP Release by Red Blood Cells under Flow: Model and Simulations

    No full text
    ATP is a major player as a signaling molecule in blood microcirculation. It is released by red blood cells (RBCs) when they are subjected to shear stresses large enough to induce a sufficient shape deformation. This prominent feature of chemical response to shear stress and RBC deformation constitutes an important link between vessel geometry, flow conditions, and the mechanical properties of RBCs, which are all contributing factors affecting the chemical signals in the process of vaso-motor modulation of the precapillary vessel networks. Several in vitro experiments have reported on ATP release by RBCs due to mechanical stress. These studies have considered both intact RBCs as well as cells within which suspected pathways of ATP release have been inhibited. This has provided profound insights to help elucidate the basic governing key elements, yet how the ATP release process takes place in the (intermediate) microcirculation zone is not well understood. We propose here an analytical model of ATP release. The ATP concentration is coupled in a consistent way to RBC dynamics. The release of ATP, or the lack thereof, is assumed to depend on both the local shear stress and the shape change of the membrane. The full chemo-mechanical coupling problem is written in a lattice-Boltzmann formulation and solved numerically in different geometries (straight channels and bifurcations mimicking vessel networks) and under two kinds of imposed flows (shear and Poiseuille flows). Our model remarkably reproduces existing experimental results. It also pinpoints the major contribution of ATP release when cells traverse network bifurcations. This study may aid in further identifying the interplay between mechanical properties and chemical signaling processes involved in blood microcirculation
    • …
    corecore