4 research outputs found

    The Effect of California’s Breast Density Notification Legislation on Breast Cancer Screening

    No full text
    Purpose: Half of US states mandate women be notified if they have dense breasts on their mammogram, yet guidelines and data on supplemental screening modalities are limited. Breast density (BD) refers to the extent that breast tissue appears radiographically dense on mammograms. High BD reduces the sensitivity of screening mammography and increases breast cancer risk. The aim of this study was to determine the potential impact of California’s 2013 BD notification legislation on breast cancer screening patterns. Methods: We conducted a cohort study of women aged 40 to 74 years who were members of a large Northern California integrated health plan (approximately 3.9 million members) in 2011-2015. We calculated pre- and post-legislation rates of screening mammography and magnetic resonance imaging (MRI). We also examined whether women with dense breasts (defined as BI-RADS density c or d) had higher MRI rates than women with nondense breasts (defined as BI-RADS density a or b). Results: After adjustment for race/ethnicity, age, body mass index, medical facility, neighborhood median income, and cancer history, there was a relative 6.6% decrease (relative risk [RR] 0.934, confidence interval [CI] 0.92-0.95) in the rate of screening mammography, largely driven by a decrease among women <50 years. While infrequent, there was a relative 16% increase (RR 1.16, CI 1.07-1.25) in the rate of screening MRI, with the greatest increase among the youngest women. In the postlegislation period, women with extremely dense breasts (BI-RADS d) had 2.77 times (CI 1.93-3.95) the odds of a MRI within 9 months of a screening mammogram compared with women with nondense breasts (BI-RADS b). Conclusions: In this setting, MRI rates increased in the postlegislation period. In addition, women with higher BD were more likely to have supplementary MRI. The decrease in mammography rates seen primarily among younger women may have been due to changes in national screening guidelines

    Genotype-phenotype correlations and novel molecular insights into the DHX30-associated neurodevelopmental disorders.

    Get PDF
    BACKGROUND We aimed to define the clinical and variant spectrum and to provide novel molecular insights into the DHX30-associated neurodevelopmental disorder. METHODS Clinical and genetic data from affected individuals were collected through Facebook-based family support group, GeneMatcher, and our network of collaborators. We investigated the impact of novel missense variants with respect to ATPase and helicase activity, stress granule (SG) formation, global translation, and their effect on embryonic development in zebrafish. SG formation was additionally analyzed in CRISPR/Cas9-mediated DHX30-deficient HEK293T and zebrafish models, along with in vivo behavioral assays. RESULTS We identified 25 previously unreported individuals, ten of whom carry novel variants, two of which are recurrent, and provide evidence of gonadal mosaicism in one family. All 19 individuals harboring heterozygous missense variants within helicase core motifs (HCMs) have global developmental delay, intellectual disability, severe speech impairment, and gait abnormalities. These variants impair the ATPase and helicase activity of DHX30, trigger SG formation, interfere with global translation, and cause developmental defects in a zebrafish model. Notably, 4 individuals harboring heterozygous variants resulting either in haploinsufficiency or truncated proteins presented with a milder clinical course, similar to an individual harboring a de novo mosaic HCM missense variant. Functionally, we established DHX30 as an ATP-dependent RNA helicase and as an evolutionary conserved factor in SG assembly. Based on the clinical course, the variant location, and type we establish two distinct clinical subtypes. DHX30 loss-of-function variants cause a milder phenotype whereas a severe phenotype is caused by HCM missense variants that, in addition to the loss of ATPase and helicase activity, lead to a detrimental gain-of-function with respect to SG formation. Behavioral characterization of dhx30-deficient zebrafish revealed altered sleep-wake activity and social interaction, partially resembling the human phenotype. CONCLUSIONS Our study highlights the usefulness of social media to define novel Mendelian disorders and exemplifies how functional analyses accompanied by clinical and genetic findings can define clinically distinct subtypes for ultra-rare disorders. Such approaches require close interdisciplinary collaboration between families/legal representatives of the affected individuals, clinicians, molecular genetics diagnostic laboratories, and research laboratories
    corecore