1,463 research outputs found

    APPLICATIONS OF BIOMECHANCIS IN SWIMMING

    Get PDF
    Swimming is one of the most popular forms of physical activity and competitive sports around the globe. The purpose of this study was to further understand how people move through the medium of water. To address this issue three projects were conducted on elite swimmers (FINA rankings >900) and quantified the biomechanics of swimming via inertial sensors, towing force devices, and bilateral swim ergometers combined with 3D kinematics. The previously unknown parameters of quantifying kick rate and kick have been established; the influence of breathing on the net drag identified; and scientific basis for the Paralympic swimming classification process quantified. Applications of these biomechanical measures add to the pool of knowledge on swimming technique and form the foundation for an evidence-based International Paralympic swimming classification system

    Features of Acceleration and Angular Velocity Using Thigh IMUs during Walking in Water

    Get PDF
    Ten participants were assessed while walking in water and on land with wearable inertial measurement units (IMUs) attached to the right thigh. Longitudinal acceleration, anterior-posterior acceleration, and frontal axis angular velocity were measured at 100 Hz, matched with video analysis sampled at 25 Hz during the walking trials. The longitudinal acceleration showed almost 1 g from initial heel contact to 70% of one cycle, and the anterior-posterior acceleration showed a sinusoidal pattern, synchronizing the approximate posture of the thigh in water. The frontal axis angular velocity fluctuated less while walking in water compared with on land, because thigh motion speed was slower in water than on land. The acceleration and angular velocity in water were stable and did not fluctuate. Walking exercises in water may be effective in individuals with knee- or thigh-related medical issues

    Underwater Electromyogram for Human Health Exercise

    Get PDF
    The physical qualities of water are well established and include buoyancy, water drag force, hydrostatic pressure and thermal conductivity. The large difference in these physical qualities, compared to land-based activities, affect the human body in both physiologic and biomechanical aspects. An example of this is buoyancy, which acts vertically against gravity on the immersed object thus decreasing weight of the human body. The buoyancy level is equal to the mass of water displaced by the immersed object and is based on the accepted Archimedean principle. When a human is immersed in water up to the level of pubis around 40% of weight is accounted for, 50% at umbilical, 60% at xiphoid, and almost 80% at the level of axillary. When immersed to their lower limb joint and waist in a water environment, humans can easily move, without gravitational overload, due to the buoyancy effect

    A COMPARISON OF LOWER LIMB JOINTS ANGULAR DISPLACEMENT BETWEEN LAND AND WATER-WALKING USING DYNAMIC TIME WARPING

    Get PDF
    The purpose of this study was firstly to compare lower limb joints angular displacement between land and water-walking by dynamic time warping. Six subjects (age 30.0±5.3 yr) performed 10 m land and water-walking at self-selected speed. Ankle, knee and hip joint angular displacements were calculated from video (25Hz) and compared to the two wave forms from the dynamic time warping procedure. Results showed the ankle and knee joints demonstrated warping periods in water-walking, when compared with land-walking. However, the warping periods around toe-off was seen at the hip joint in land-walking, compared with water-walking. Overall the ankle and knee joints motion in water walking were comparable to land-walking motion. However, the hip joint kinematics during water walking were not always comparable with land walking kinematics

    Cardiac autonomic and salivary responses to a repeated training bout in elite swimmers

    Get PDF
    This study examined the acute training responses of heart rate variability (HRV) and salivary biomarkers (immunoglobulin A and alpha-amylase) following a standardised training bout in Paralympic swimmers. Changes in HRV, sIgA and sAA were documented Monday morning, Monday afternoon and Tuesday morning over a 14-week monitoring period leading into international competition. Magnitude based inferences with effect sizes (ES) were used to assess the practical significance of changes each week. Normal training responses elicited increases in HR, 1, sAA and sIgA, accompanied by decreases in HF(nu), standard deviation of instantaneous RR variability (SD1) and the root mean square of successive differences (RMSSD) from Monday morning to Monday afternoon, and to Tuesday morning with similar week to week responses for most variables. Changes in RMSSD from Monday a.m. to p.m. were likely smaller (less negative) for Week 7 (78/18/3, ES = 0.40) following a competition weekend with similar changes observed from Monday a.m. to Tuesday a.m. (90/5/5, ES = 1.30). In contrast, the change in sAA from Monday a.m. to p.m. was very likely less (more negative) at Week 7 (0/0/99, ES = -2.46), with similar changes observed from Monday a.m. to Tuesday a.m. (0/0/99, ES = -4.69). During the taper period, there were also likely increases in parasympathetic modulations (RMSSD, Weeks 12-14) along with increased immune function (sIgA, Week 13) that demonstrated a favourable state of athlete preparedness. Used together, HRV and sAA provide coaches with valuable information regarding physiological changes in response to training and competition

    Twelve weeks of BodyBalance® training improved balance and functional task performance in middle-aged and older adults

    Get PDF
    Purpose: The purpose of the study was to evaluate the effect of BodyBalance® training on balance, functional task performance, fear of falling, and health-related quality of life in adults aged over 55 years. Participants and methods: A total of 28 healthy, active adults aged 66±5 years completed the randomized controlled trial. Balance, functional task performance, fear of falling, and self-reported quality of life were assessed at baseline and after 12 weeks. Participants either undertook two sessions of BodyBalance per week for 12 weeks (n=15) or continued with their normal activities (n=13). Results: Significant group-by-time interactions were found for the timed up and go (P=0.038), 30-second chair stand (P=0.037), and mediolateral center-of-pressure range in narrow stance with eyes closed (P=0.017). There were no significant effects on fear of falling or self-reported quality of life. Conclusion: Twelve weeks of BodyBalance training is effective at improving certain balance and functional based tasks in healthy older adults

    The development of a component to improve the loading safety of bone-anchored prostheses

    Get PDF
    Use of socket prostheses Currently, for individuals with limb loss, the conventional method of attaching a prosthetic limb relies on a socket that fits over the residual limb. However, there are a number of issues concerning the use of a socket (e.g., blisters, irritation, and discomfort) that result in dissatisfaction with socket prostheses, and these lead ultimately a significant decrease in quality of life. Bone-anchored prosthesis Alternatively, the concept of attaching artificial limbs directly to the skeletal system has been developed (bone anchored prostheses), as it alleviates many of the issues surrounding the conventional socket interface.Bone anchored prostheses rely on two critical components: the implant, and the percutaneous abutment or adapter, which forms the connection for the external prosthetic system (Figure 1). To date, an implant that screws into the long bone of the residual limb has been the most common intervention. However, more recently, press-fit implants have been introduced and their use is increasing. Several other devices are currently at various stages of development, particularly in Europe and the United States. Benefits of bone-anchored prostheses Several key studies have demonstrated that bone-anchored prostheses have major clinical benefits when compared to socket prostheses (e.g., quality of life, prosthetic use, body image, hip range of motion, sitting comfort, ease of donning and doffing, osseoperception (proprioception), walking ability) and acceptable safety, in terms of implant stability and infection. Additionally, this method of attachment allows amputees to participate in a wide range of daily activities for a substantially longer duration. Overall, the system has demonstrated a significant enhancement to quality of life. Challenges of direct skeletal attachment However, due to the direct skeletal attachment, serious injury and damage can occur through excessive loading events such as during a fall (e.g., component damage, peri-prosthetic fracture, hip dislocation, and femoral head fracture). These incidents are costly (e.g., replacement of components) and could require further surgical interventions. Currently, these risks are limiting the acceptance of bone-anchored technology and the substantial improvement to quality of life that this treatment offers. An in-depth investigation into these risks highlighted a clear need to re-design and improve the componentry in the system (Figure 2), to improve the overall safety during excessive loading events. Aim and purposes The ultimate aim of this doctoral research is to improve the loading safety of bone-anchored prostheses, to reduce the incidence of injury and damage through the design of load restricting components, enabling individuals fitted with the system to partake in everyday activities, with increased security and self-assurance. The safety component will be designed to release or ‘fail’ external to the limb, in a way that protects the internal bone-implant interface, thus removing the need for restorative surgery and potential damage to the bone. This requires detailed knowledge of the loads typically experienced by the limb and an understanding of potential overload situations that might occur. Hence, a comprehensive review of the loading literature surrounding bone anchored prostheses will be conducted as part of this project, with the potential for additional experimental studies of the loads during normal activities to fill in gaps in the literature. This information will be pivotal in determining the specifications for the properties of the safety component, and the bone-implant system. The project will follow the Stanford Biodesign process for the development of the safety component

    Detection of Illegal Race Walking: A Tool to Assist Coaching and Judging

    Get PDF
    Current judging of race walking in international competitions relies on subjective human observation to detect illegal gait, which naturally has inherent problems. Incorrect judging decisions may devastate an athlete and possibly discredit the international governing body. The aim of this study was to determine whether an inertial sensor could improve accuracy, monitor every step the athlete makes in training and/or competition. Seven nationally competitive race walkers performed a series of legal, illegal and self-selected pace races. During testing, athletes wore a single inertial sensor (100 Hz) placed at S1 of the vertebra and were simultaneously filmed using a high-speed camera (125 Hz). Of the 80 steps analyzed the high-speed camera identified 57 as illegal, the inertial sensor misidentified four of these measures (all four missed illegal steps had 0.008 s of loss of ground contact) which is considerably less than the best possible human observation of 0.06 s. Inertial sensor comparison to the camera found the typical error of estimate was 0.02 s (95% confidence limits 0.01–0.02), with a bias of 0.02 (±0.01). An inertial sensor can thus objectively improve the accuracy in detecting illegal steps (loss of ground contact) and, along with the ability to monitor every step of the athlete, could be a valuable tool to assist judges during race walk events

    Improving the objectivity of the current World Para Swimming motor coordination test for swimmers with hypertonia, ataxia and athetosis using measures of movement smoothness, rhythm and accuracy

    Get PDF
    The current protocol for classifying Para swimmers with hypertonia, ataxia and athetosis involves a physical assessment where the individual’s ability to coordinate their limbs is scored by subjective clinical judgment. The lack of objective measurement renders the current test unsuitable for evidence-based classification. This study evaluated a revised version of the Para swimming assessment for motor coordination, incorporating practical, objective measures of movement smoothness, rhythm error and accuracy. Nineteen Para athletes with hypertonia and 19 non-disabled participants performed 30 s trials of bilateral alternating shoulder flexion-extension at 30 bpm and 120 bpm. Accelerometry was used to quantify movement smoothness; rhythm error and accuracy were obtained from video. Para athletes presented significantly less smooth movement and higher rhythm error than the non-disabled participants (p < 0.05). Random forest algorithm successfully classified 89% of participants with hypertonia during out-of-bag predictions. The most important predictors in classifying participants were movement smoothness at both movement speeds, and rhythm error at 120 bpm. Our results suggest objective measures of movement smoothness and rhythm error included in the current motor coordination test protocols can be used to infer impairment in Para swimmers with hypertonia. Further research is merited to establish the relationship of these measures with swimming performance

    To the editors

    Get PDF
    SPINE Volume 40, Number 15, p E91
    • …
    corecore