37 research outputs found

    Osteomyelitis associated with Bartonella henselae infection in a young cat

    Get PDF
    Case summary A 1-year-old male intact domestic shorthair cat was evaluated for acute onset non-weightbearing left forelimb lameness and generalized peripheral lymphadenopathy. CT identified a monostotic aggressive bone lesion with an incomplete fracture of the left radial metaphysis. Bone aspirates yielded osteoblasts with minimal nuclear atypia. Abdominal ultrasound revealed a nodular spleen and lymphadenopathy; cytologically, both contained lymphoid hyperplasia. A urine histoplasma antigen test was negative. Bartonella henselae and Mycoplasma haemominutum DNA was amplified by PCR from peripheral blood. Indirect immunofluorescence documented strong B henselae immunoreactivity, with lower Bartonella vinsonii subspecies berkhoffii and Bartonella koehlerae antibody titers. After the administration of doxycycline and pradofloxacin for suspected Bartonella-induced osteomyelitis, lameness resolved rapidly. Six-week post-treatment radiographs identified healing of the affected bone, and Bartonella species enrichment blood culture was negative. B henselae antibody titers decreased four-fold over a year, supporting seroreversion.Relevance and novel informationB henselae is a flea-transmitted, host-adapted species, not previously implicated as a cause of osteomyelitis in cats. B henselae subclinical bacteremia is highly prevalent among cats; however, bacteremia has been associated with lymphadenopathy and febrile illness in cats. This report describes a unique clinical presentation in association with B henselae infection in a cat

    What Physical Processes Drive the Interstellar Medium in the Local Bubble?

    Get PDF
    Recent 3D high-resolution simulations of the interstellar medium in a star form- ing galaxy like the Milky Way show that supernova explosions are the main driver of the structure and evolution of the gas. Its physical state is largely controlled by turbulence due to the high Reynolds numbers of the average flows. For a constant supernova rate a dynam- ical equilibrium is established within 200 Myr of simulation as a consequence of the setup of a galactic fountain. The resulting interstellar medium reveals a typical density/pressure pattern, i.e. distribution of so-called gas phases, on scales of 500–700 pc, with interstellar bubbles being a common phenomenon just like the Local Bubble and the Loop I superbub- ble, which are assumed to be interacting. However, modeling the Local Bubble is special, because it is driven by a moving group, passing through its volume, as it is inferred from the analysis of Hipparcos data. A detailed analysis reveals that between 14 and 19 super- novae have exploded during the last 15 Myr. The age of the Local Bubble is derived from comparison with HI and UV absorption line data to be 14.5±0.7 Myr. We further predict the 0.4merging of the two bubbles in about 3 Myr from now, when the interaction shell starts to fragment. The Local Cloud and its companion HI clouds are the consequence of a dynamical instability in the interaction shell between the Local and the Loop I bubble

    Revising the Local Bubble Model due to Solar Wind Charge Exchange X-ray Emission

    Full text link
    The hot Local Bubble surrounding the solar neighborhood has been primarily studied through observations of its soft X-ray emission. The measurements were obtained by attributing all of the observed local soft X-rays to the bubble. However, mounting evidence shows that the heliosphere also produces diffuse X-rays. The source is solar wind ions that have received an electron from another atom. The presence of this alternate explanation for locally produced diffuse X-rays calls into question the existence and character of the Local Bubble. This article addresses these questions. It reviews the literature on solar wind charge exchange (SWCX) X-ray production, finding that SWCX accounts for roughly half of the observed local 1/4 keV X-rays found at low latitudes. This article also makes predictions for the heliospheric O VI column density and intensity, finding them to be smaller than the observational error bars. Evidence for the continued belief that the Local Bubble contains hot gas includes the remaining local 1/4 keV intensity, the observed local O VI column density, and the need to fill the local region with some sort of plasma. If the true Local Bubble is half as bright as previously thought, then its electron density and thermal pressure are 1/square-root(2) as great as previously thought, and its energy requirements and emission measure are 1/2 as great as previously thought. These adjustments can be accommodated easily, and, in fact, bring the Local Bubble's pressure more in line with that of the adjacent material. Suggestions for future work are made.Comment: 9 pages, refereed, accepted for publication in the proceedings of the "From the Outer Heliosphere to the Local Bubble: Comparisons of New Observations with Theory" conference and in Space Science Review

    Distribution and risk factors associated with Babesia spp. infection in hunting dogs from Southern Italy

    Get PDF
    Canine babesiosis is caused by haemoprotozoan organisms of the genus Babesia which are transmitted by the bite of a hard tick. The aim of this survey was to determine the prevalence and risk factors associated with Babesia species infections in hunting dogs from Southern Italy. Blood samples were collected from 1311 healthy dogs in the Napoli, Avellino and Salerno provinces of the Campania region of Southern Italy. Serological testing was performed using two enzyme-linked immunosorbent assays (ELISA), with one designed to detect B. canis and B. vogeli antibodies, and the other designed to detect B. gibsoni antibodies. Blood samples were also tested by quantitative real-time polymerase chain reaction (qPCR) assays for amplification of B. canis, B. vogeli and B. gibsoni DNA. The overall seroprevalence for B. canis/B. vogeli was 14.0%, compared to 0.2% for B. gibsoni. B. canis and B. vogeli PCR positive rates were 0.15% and 1.1%, respectively. B. gibsoni DNA was not amplified by qPCR. Male gender (OR 1.85), increased age (OR 1.01), long hair coat (OR 1.61) and living in Salerno province (OR 1.71) represented risk factors for B. canis/B. vogeli seroreactivity. Hunting dogs in Southern Italy are often exposed to B. canis/B. vogeli, however Babesia spp. infection was infrequently detected using qPCR. Further studies are needed to determine the extent to which Babesia spp. cause clinical disease in hunting dogs, and to evaluate the potential epidemiological relationships between hunting dogs and wild animal populations sharing the same area

    Bartonella Clarridgeiae Bacteremia Detected In An Asymptomatic Blood Donor

    Get PDF
    Human exposure to Bartonella clarridgeiae has been reported only on the basis of antibody detection. We report for the first time an asymptomatic human blood donor infected with B. clarridgeiae, as documented by enrichment blood culture, PCR, and DNA sequencing.531352356Maggi, R.G., Duncan, A.W., Breitschwerdt, E.B., Novel chemically modified liquid medium that will support the growth of seven Bartonella species (2005) J Clin Microbiol, 43, pp. 2651-2655. , http://dx.doi.org/10.1128/JCM.43.6.2651-2655.2005Drummond, M.R., Pitassi, L.H., Lania, B.G., Dos Santos, S.R., Gilioli, R., Velho, P.E., Detection of Bartonella henselae in defibrinated sheep blood used for culture media supplementation (2011) Braz J Microbiol, 42, pp. 430-432. , http://dx.doi.org/10.1590/S1517-83822011000200003Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., Basic local alignment search tool (1990) J Mol Biol, 215, pp. 403-410Dalton, M.J., Robinson, L.E., Cooper, J., Regnery, R.L., Olson, J.G., Childs, J.E., Use of Bartonella antigens for serologic diagnosis of cat-scratch disease at a national referral center (1995) Arch Intern Med, 155, pp. 1670-1676Breitschwerdt, E.B., Maggi, R.G., Chomel, B.B., Lappin, M.R., Bartonellosis: An emerging infectious disease of zoonotic importance to animals and human beings (2010) J Vet Emerg Crit Care (San Antonio), 20, pp. 8-30. , http://dx.doi.org/10.1111/j.1476-4431.2009.00496.xChamberlin, J., Laughlin, L.W., Romero, S., Solorzano, N., Gordon, S., Andre, R.G., Pachas, P., Watts, D., Epidemiology of endemic Bartonella bacilliformis: A prospective cohort study in a Peruvian mountain valley community (2002) J Infect Dis, 186, pp. 983-990. , http://dx.doi.org/10.1086/344054Maggi, R.G., Ericson, M., Mascarelli, P.E., Bradley, J.M., Breitschwerdt, E.B., Bartonella henselae bacteremia in a mother and son potentially associated with tick exposure (2013) Parasit Vectors, 6, p. 101. , http://dx.doi.org/10.1186/1756-3305-6-101Scott, M.A., McCurley, T.L., Vnencak-Jones, C.L., Hager, C., McCoy, J.A., Anderson, B., Collins, R.D., Edwards, K.M., Cat scratch disease: Detection of Bartonella henselae DNA in archival biopsies from patients with clinically, serologically, and histologically defined disease (1996) Am J Pathol, 149, pp. 2161-2167Slater, L.N., Welch, D.F., Min, K.W., Rochalimaea henselae causes bacillary angiomatosis and peliosis hepatis (1992) Arch Intern Med, 152, pp. 602-606Sander, A., Zagrosek, A., Bredt, W., Schiltz, E., Piemont, Y., Lanz, C., Dehio, C., Characterization of Bartonella clarridgeiae flagellin (FlaA) and detection of antiflagellin antibodies in patients with lymphadenopathy (2000) J Clin Microbiol, 38, pp. 2943-2948Kordick, D.L., Hilyard, E.J., Hadfield, T.L., Wilson, K.H., Steigerwalt, A.G., Brenner, D.J., Breitschwerdt, E.B., Bartonella clarridgeiae, a newly recognized zoonotic pathogen causing inoculation papules, fever, and lymphadenopathy (cat scratch disease) (1997) J Clin Microbiol, 35, pp. 1813-1818Margileth, A.M., Baehren, D.F., Chest-wall abscess due to cat-scratch disease (CSD) in an adult with antibodies to Bartonella clarridgeiae: Case report and review of the thoracopulmonary manifestations of CSD (1998) Clin Infect Dis, 27, pp. 353-357. , http://dx.doi.org/10.1086/514671Chomel, B.B., Mac Donald, K.A., Kasten, R.W., Chang, C.C., Wey, A.C., Foley, J.E., Thomas, W.P., Kittleson, M.D., Aortic valve endocarditis in a dog due to Bartonella clarridgeiae (2001) J Clin Microbiol, 39, pp. 3548-3554. , http://dx.doi.org/10.1128/JCM.39.10.3548-3554.2001Gillespie, T.N., Washabau, R.J., Goldschmidt, M.H., Cullen, J.M., Rogala, A.R., Breitschwerdt, E.B., Detection of Bartonella henselae and Bartonella clarridgeiae DNA in hepatic specimens from two dogs with hepatic disease (2003) J Am Vet Med Assoc, 222, pp. 47-51. , http://dx.doi.org/10.2460/javma.2003.222.47, 35Robinson, M.T., Hillman, T., Langton, D.A., Shaw, S.E., Bartonella clarridgeiae in a cat in the UK (2009) Vet Rec, 164, pp. 58-59. , http://dx.doi.org/10.1136/vr.164.2.58Sykes, J.E., Westropp, J.L., Kasten, R.W., Chomel, B.B., Association between Bartonella species infection and disease in pet cats as determined using serology and culture (2010) J Feline Med Surg, 12, pp. 631-636. , http://dx.doi.org/10.1016/j.jfms.2010.04.003Fouch, B., Coventry, S., A case of fatal disseminated Bartonella henselae infection (cat-scratch disease) with encephalitis (2007) Arch Pathol Lab Med, 131, pp. 1591-1594Boudebouch, N., Sarih, M., Beaucournu, J.C., Amarouch, H., Hassar, M., Raoult, D., Parola, P., Bartonella clarridgeiae, B. Henselae, and Rickettsia felis in fleas from Morocco (2011) Ann Trop Med Parasitol, 105, pp. 493-498. , http://dx.doi.org/10.1179/1364859411Y.0000000038Kordick, D.L., Brown, T.T., Shin, K., Breitschwerdt, E.B., Clinical and pathologic evaluation of chronic Bartonella henselae or Bartonella clarridgeiae infection in cats (1999) J Clin Microbiol, 37, pp. 1536-1547Chomel, B.B., Carlos, E.T., Kasten, R.W., Yamamoto, K., Chang, C.C., Carlos, R.S., Abenes, M.V., Pajares, C.M., Bartonella henselae and Bartonella clarridgeiae infection in domestic cats from the Philippines (1999) Am J Trop Med Hyg, 60, pp. 593-597Dehio, C., Bartonella interactions with endothelial cells and erythrocytes (2001) Trends Microbiol, 9, pp. 279-285. , http://dx.doi.org/10.1016/S0966-842X(01)02047-9Dehio, C., Meyer, M., Berger, J., Schwarz, H., Lanz, C., Interaction of Bartonella henselae with endothelial cells results in bacterial aggregation on the cell surface and the subsequent engulfment and internalisation of the bacterial aggregate by a unique structure, the invasome (1997) J Cell Sci, 110 (18), pp. 2141-2154Braga Mdo, S., Diniz, P.P., André, M.R., Bortoli, C.P., Machado, R.Z., Molecular characterisation of Bartonella species in cats from São Luís, state of Maranhão, North-Eastern Brazil (2012) Mem Inst Oswaldo Cruz, 107, pp. 772-777. , http://dx.doi.org/10.1590/S0074-02762012000600011Eremeeva, M.E., Gerns, H.L., Lydy, S.L., Goo, J.S., Ryan, E.T., Mathew, S.S., Ferraro, M.J., Koehler, J.E., Bacteremia, fever, and splenomegaly caused by a newly recognized Bartonella species (2007) N Engl J Med, 356, pp. 2381-2387. , http://dx.doi.org/10.1056/NEJMoa065987Chomel, B.B., Boulouis, H.J., Breitschwerdt, E.B., Kasten, R.W., Vayssier-Taussat, M., Birtles, R.J., Koehler, J.E., Dehio, C., Ecological fitness and strategies of adaptation of Bartonella species to their hosts and vectors (2009) Vet Res, 40, p. 29. , http://dx.doi.org/10.1051/vetres/2009011Breitschwerdt, E.B., Maggi, R.G., Duncan, A.W., Nicholson, W.L., Hegarty, B.C., Woods, C.W., Bartonella species in blood of immunocompetent persons with animal and arthropod contact (2007) Emerg Infect Dis, 13, pp. 938-941. , http://dx.doi.org/10.3201/eid1306.061337Carson, J.L., Grossman, B.J., Kleinman, S., Tinmouth, A.T., Marques, M.B., Fung, M.K., Holcomb, J.B., Djulbegovic, B., Red blood cell transfusion: A clinical practice guideline from the AABB (2012) Ann Intern Med, 157, pp. 49-58. , http://dx.doi.org/10.7326/0003-4819-157-1-201206190-00429Ramirez-Arcos, S., Goldman, M., Blajchman, M., Bacterial contamination (2012) Transfusion Reaction, 4, pp. 153-189. , Popovsky MA (ed), American Association Of Blood Banks, Bethesda, MDVamvakas, E.C., Blajchman, M.A., Transfusion-related mortality: The ongoing risks of allogeneic blood transfusion and the available strategies for their prevention (2009) Blood, 113, pp. 3406-3417. , http://dx.doi.org/10.1182/blood-2008-10-167643Magalhães, R.F., Cintra, M.L., Barjas-Castro, M.L., Del Negro, G.M., Okay, T.S., Velho, P.E., Blood donor infected with Bartonella henselae (2010) Transfus Med, 20, pp. 280-282. , http://dx.doi.org/10.1111/j.1365-3148.2010.01001.xMagalhães, R.F., Pitassi, L.H., Salvadego, M., De Moraes, A.M., Barjas-Castro, M.L., Velho, P.E., Bartonella henselae survives after the storage period of red blood cell units: Is it transmissible by transfusion? (2008) Transfus Med, 18, pp. 287-291. , http://dx.doi.org/10.1111/j.1365-3148.2008.00871.xLin, J.W., Chen, C.M., Chang, C.C., Unknown fever and back pain caused by Bartonella henselae in a veterinarian after a needle puncture: A case report and literature review (2011) Vector Borne Zoonotic Dis, 11, pp. 589-591. , http://dx.doi.org/10.1089/vbz.2009.0217Oliveira, A.M., Maggi, R.G., Woods, C.W., Breitschwerdt, E.B., Suspected needle stick transmission of Bartonella vinsonii subspecies berkhoffii to a veterinarian (2010) J Vet Intern Med, 24, pp. 1229-1232. , http://dx.doi.org/10.1111/j.1939-1676.2010.0563.xOhl, M.E., Spach, D.H., Bartonella quintana and urban trench fever (2000) Clin Infect Dis, 31, pp. 131-135. , http://dx.doi.org/10.1086/313890Daly, J.S., Worthington, M.G., Brenner, D.J., Moss, C.W., Hollis, D.G., Weyant, R.S., Steigerwalt, A.G., O'Connor, S.P., Rochalimaea elizabethae sp. Nov. Isolated from a patient with endocarditis (1993) J Clin Microbiol, 31, pp. 872-881Oksi, J., Rantala, S., Kilpinen, S., Silvennoinen, R., Vornanen, M., Veikkolainen, V., Eerola, E., Pulliainen, A.T., Cat scratch disease caused by Bartonella grahamii in an immunocompromised patient (2013) J Clin Microbiol, 51, pp. 2781-2784. , http://dx.doi.org/10.1128/JCM.00910-13Breitschwerdt, E.B., Mascarelli, P.E., Schweickert, L.A., Maggi, R.G., Hegarty, B.C., Bradley, J.M., Woods, C.W., Hallucinations, sensory neuropathy, and peripheral visual deficits in a young woman infected with Bartonella koehlerae (2011) J Clin Microbiol, 49, pp. 3415-3417. , http://dx.doi.org/10.1128/JCM.00833-11Raoult, D., Roblot, F., Rolain, J.M., Besnier, J.M., Loulergue, J., Bastides, F., Choutet, P., First isolation of Bartonella alsatica from a valve of a patient with endocarditis (2006) J Clin Microbiol, 44, pp. 278-279. , http://dx.doi.org/10.1128/JCM.44.1.278-279.2006Welch, D.F., Carroll, K.C., Hofmeister, E.K., Persing, D.H., Robison, D.A., Steigerwalt, A.G., Brenner, D.J., Isolation of a new subspecies, Bartonella vinsonii subsp. Arupensis, from a cattle rancher: Identity with isolates found in conjunction with Borrelia burgdorferi and Babesia microti among naturally infected mice (1999) J Clin Microbiol, 37, pp. 2598-2601Probert, W., Louie, J.K., Tucker, J.R., Longoria, R., Hogue, R., Moler, S., Graves, M., Fritz, C.L., Meningitis due to a "Bartonella washoensis"-like human pathogen (2009) J Clin Microbiol, 47, pp. 2332-2335. , http://dx.doi.org/10.1128/JCM.00511-09Kosoy, M., Morway, C., Sheff, K.W., Bai, Y., Colborn, J., Chalcraft, L., Dowell, S.F., Petersen, L.R., Bartonella tamiae sp. Nov., a newly recognized pathogen isolated from three human patients from Thailand (2008) J Clin Microbiol, 46, pp. 772-775. , http://dx.doi.org/10.1128/JCM.02120-07Maggi, R.G., Kosoy, M., Mintzer, M., Breitschwerdt, E.B., Isolation of Candidatus Bartonella melophagi from human blood (2009) Emerg Infect Dis, 15, pp. 66-68. , http://dx.doi.org/10.3201/eid1501.081080Lin, E.Y., Tsigrelis, C., Baddour, L.M., Lepidi, H., Rolain, J.M., Patel, R., Raoult, D., Candidatus Bartonella mayotimonensis and endocarditis (2010) Emerg Infect Dis, 16, pp. 500-503. , http://dx.doi.org/10.3201/eid1603.081673Breitschwerdt, E.B., Maggi, R.G., Cadenas, M.B., De Paiva Diniz, P.P., A groundhog, a novel Bartonella sequence, and my father's death (2009) Emerg Infect Dis, 15, pp. 2080-2086. , http://dx.doi.org/10.3201/eid1512.AD151

    Vector-borne and other pathogens of potential relevance disseminated by relocated cats

    Get PDF
    Large populations of unowned cats constitute an animal welfare, ecological, societal and public health issue worldwide. Their relocation and homing are currently carried out in many parts of the world with the intention of relieving suffering and social problems, while contributing to ethical and humane population control in these cat populations. An understanding of an individual cat’s lifestyle and disease status by veterinary team professionals and those working with cat charities can help to prevent severe cat stress and the spread of feline pathogens, especially vector-borne pathogens, which can be overlooked in cats. In this article, we discuss the issue of relocation and homing of unowned cats from a global perspective. We also review zoonotic and non-zoonotic infectious agents of cats and give a list of practical recommendations for veterinary team professionals dealing with homing cats. Finally, we present a consensus statement consolidated at the 15th Symposium of the Companion Vector-Borne Diseases (CVBD) World Forum in 2020, ultimately to help veterinary team professionals understand the problem and the role they have in helping to prevent and manage vector-borne and other pathogens in relocated cats

    Borrelioses, agentes e vetores

    Full text link
    corecore