397 research outputs found

    Podoplanin is a useful marker for identifying mesothelioma in malignant effusions

    Full text link
    The diagnosis of malignant mesothelioma in serosal effusions continues to be a major challenge because some of its cytomorphological features closely resemble adenocarcinomas. Immunohistochemistry is a valuable tool in the differentiation of epithelioid mesothelioma from metastatic adenocarcinomas. However, no single antibody has demonstrated absolute sensitivity or specificity. In this study, we evaluated the value of immunostaining pattern for podoplanin to differentiate mesothelioma from adenocarcinomas of various origins. Cell blocks from previously collected paraffin-embedded cell blocks of 86 effusions (18 mesothelioma, 35 reactive mesothelium, 9 breast adenocarcinoma, 14 ovarian adenocarcinoma, and 10 lung adenocarcinoma) were retrieved from the file of the Department of Pathology at University of Michigan and Lund University in Sweden and were used for the study. Slides prepared from the cell blocks were stained for podoplanin. The percentage of immunostained cells was recorded as follows: 1+ (5–25%), 2+ (26–50%), and 3+ (>50%). A stain result involving <5% of cells was considered negative. The intensity of positive results was evaluated as strong, moderate, or weak. Podoplanin is expressed in 94% of malignant mesothelioma cases (17/18), 97% (30/31) of cases of reactive mesothelial, 0% of lung adenocarcinoma cases (0/9), 0% of breast adenocarcinoma (0/9), and 7% of ovarian adenocarcinoma (1/14). All positive cases of malignant mesothelioma and reactive mesothelium showed strong membranous reactivity to podoplanin. The one positive case of ovarian adenocarcinoma showed a weak membranous podoplanin immunostaining. On the basis of our results and published data, we believe that membranous podoplanin immunoreactivity, in conjunction with calretinin, would be more specific than CK5/6 and WT-1 in differentiating epithelioid malignant mesothelioma from adenocarcinoma of the lung, breast, and ovary. Diagn. Cytopathol. 2010. © 2010 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69197/1/21340_ftp.pd

    Intraneural pseudocyst (so-called ganglion) in an unusual retroperitoneal periadnexal location?

    Get PDF
    A case of an unusual unilocular cystic lesion of diameter 7 cm located retroperitoneally in the pelvis in close connection to the right adnexa of a 61 year-old woman is presented. Macroscopically, the lesion had a smooth outer and inner surface and was filled with translucent fluid. Histological examination revealed a fibrous and hyalinized wall which lacked a specific lining. Numerous nerve bundles in the cyst wall constituted the most conspicuous element of its histology possibly with some contribution of perineurial and/or mesothelial components. The morphology and immunohistochemistry speak for an intraneural pseudocyst sometimes called intraneural ganglion cyst which is rare in this location

    Differential Prox-1 and CD 31 expression in mucousae, cutaneous and soft tissue vascular lesions and tumors

    Get PDF
    The study of lymphatic vessels and lymphatic tumors has been hampered with difficulty due to the overlapping morphological features between blood and lymphatic endothelial cells, as well as to the lack of specific lymphatic endothelial markers. Over the last few years, lymphatic vessels and lymphangiogenesis have received great attention owing to their putative implications in terms of metastatic dissemination and the promise of targets for lymphangiogenic therapy. Prox-1 is a nuclear transcription factor that plays a major role during embryonic lymphangiogenesis and is deemed to be a useful marker for differentiating lymphatic endothelial cells from the other blood vessels endothelial cells. Here, we describe a double-immunostaining strategy for formalin-fixed, paraffinembedded tissues that aims at evaluating the distribution of Prox-1 and CD 31 – a cytoplasmic pan-endothelial marker -in a series of 28 mucousae, cutaneous and soft tissue vascular lesions and tumors, including hemangiomas, lymphangiomas, lymphangiectasia, and Kaposi’s sarcomas. Our results showed that in non-lesional mucousae and skin, Prox-1 decorated exclusively the nuclei of endothelial cells in lymphatic vessels. Prox-1 stained almost all the benign lymphatic vascular lesions/tumors (91%) and was absent or only focally positive in 75% of blood vascular tumors. CD 31 stained endothelial cells of blood vessels of superficial and deep dermal plexuses, lymphatics, and all blood vascular lesions/tumors. Kaposi’s sarcomas were all positive for both CD 31 and Prox-1 markers. In conclusion, although Prox-1 expression in vascular lesions/tumors was not entirely restricted to tumors with known lymphatic differentiation, CD 31/Prox-1 double-immunolabeling can be used as an adjunct marker to identify lymphatic vessels in routinely processed formalin-fixed, paraffin-embedded samples

    Lymphatic marker podoplanin/D2-40 in human advanced cirrhotic liver- Re-evaluations of microlymphatic abnormalities

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>From the morphological appearance, it was impossible to distinguish terminal portal venules from small lymphatic vessels in the portal tract even using histochemical microscopic techniques. Recently, D2-40 was found to be expressed at a high level in lymphatic endothelial cells (LECs). This study was undertaken to elucidate hepatic lymphatic vessels during progression of cirrhosis by examining the expression of D2-40 in LECs.</p> <p>Methods</p> <p>Surgical wedge biopsy specimens were obtained from non-cirrhotic portions of human livers (normal control) and from cirrhotic livers (LC) (Child A-LC and Child C-LC). Immunohistochemical (IHC), Western blot, and immunoelectron microscopic studies were conducted using D2-40 as markers for lymphatic vessels, as well as CD34 for capillary blood vessels.</p> <p>Results</p> <p>Imunostaining of D2-40 produced a strong reaction in lymphatic vessels only, especially in Child C-LC. It was possible to distinguish the portal venules from the small lymphatic vessels using D-40. Immunoelectron microscopy revealed strong D2-40 expression along the luminal and abluminal portions of the cell membrane of LECs in Child C-LC tissue.</p> <p>Conclusion</p> <p>It is possible to distinguish portal venules from small lymphatic vessels using D2-40 as marker. D2-40- labeling in lymphatic capillary endothelial cells is related to the degree of fibrosis in cirrhotic liver.</p

    Nephrin Is Expressed on the Surface of Insulin Vesicles and Facilitates Glucose-Stimulated Insulin Release

    Get PDF
    Nephrin, an immunoglobulin-like protein essential for the function of the glomerular podocyte and regulated in diabetic nephropathy, is also expressed in pancreatic beta-cells, where its function remains unknown. The aim of this study was to investigate whether diabetes modulates nephrin expression in human pancreatic islets and to explore the role of nephrin in beta-cell function. Nephrin expression in human pancreas and in MIN6 insulinoma cells was studied by Western blot, PCR, confocal microscopy, subcellular fractionation, and immunogold labeling. Islets from diabetic (n = 5) and nondiabetic (n = 7) patients were compared. Stable transfection and siRNA knockdown in MIN-6 cells/human islets were used to study nephrin function in vitro and in vivo after transplantation in diabetic immunodeficient mice. Live imaging of green fluorescent protein (GFP)-nephrin-transfected cells was used to study nephrin endocytosis. Nephrin was found at the plasma membrane and on insulin vesicles. Nephrin expression was decreased in islets from diabetic patients when compared with nondiabetic control subjects. Nephrin transfection in MIN-6 cells/pseudoislets resulted in higher glucose-stimulated insulin release in vitro and in vivo after transplantation into immunodeficient diabetic mice. Nephrin gene silencing abolished stimulated insulin release. Confocal imaging of GFP-nephrin-transfected cells revealed nephrin endocytosis upon glucose stimulation. Actin stabilization prevented nephrin trafficking as well as nephrin-positive effect on insulin release. Our data suggest that nephrin is an active component of insulin vesicle machinery that may affect vesicle-actin interaction and mobilization to the plasma membrane. Development of drugs targeting nephrin may represent a novel approach to treat diabetes

    The potential role of podoplanin in tumour invasion

    Get PDF
    Podoplanin is a small mucin-like transmembrane protein, widely expressed in various specialised cell types throughout the body. Here, we revisit the mechanism of podoplanin-mediated tumour invasion. We compare molecular pathways leading to single and collective cell invasion and discuss novel distinct concepts of tumour cell invasion
    corecore