1,651 research outputs found

    High resolution millimeter wave SAR interferometry

    Full text link
    High resolution millimeter wave synthetic aperture radar (SAR) interferometry is presented using the MEMPHIS multi-baseline InSAR system. A complete processing chain is used to generate digital elevation models starting from the radar raw data. A deeper focus is laid on the phase unwrapping step, which is achieved using the multi-baseline properties of the system. In November 2006, an experiment was realized including two test sites in Switzerland; the actual results are presented and discussed

    Processing of MEMPHIS millimeter wave multi-baseline InSAR data

    Full text link
    This paper presents a processing method for multi-baseline interferometric data acquired with the MEMPHIS airborne sensor. The processing method ingests the SAR raw data from each receiver and extends up to the generation of digital elevation models (DEMs). Critical steps include the correction of the azimuth phase undulations, the multi- baseline processing and the phase-to-DEM conversion. Methods for resolving the various hurdles were adapted to the MEMPHIS sensor and are presented here. The results obtained for a data take over a test site near Zurich, Switzerland are shown; these results are in a good agreement with comparable LIDAR products

    Noise Characteristics of a Four-Jet Impingement Device Inside a Broadband Engine Noise Simulator

    Get PDF
    The noise generation mechanisms for four directly impinging supersonic jets are investigated employing implicit large eddy simulations with a higher-order accurate weighted essentially non-oscillatory shock-capturing scheme. Impinging jet devices are often used as an experimental apparatus to emulate a broadband noise source. Although such devices have been used in many experiments, a detailed investigation of the noise generation mechanisms has not been conducted before. Thus, the underlying physical mechanisms that are responsible for the generation of sound waves are not well understood. The flow field is highly complex and contains a wide range of temporal and spatial scales relevant for noise generation. Proper orthogonal decomposition of the flow field is utilized to characterize the unsteady nature of the flow field involving unsteady shock oscillations, large coherent turbulent flow structures, and the sporadic appearance of vortex tubes in the center of the impingement region. The causality method based on Lighthill's acoustic analogy is applied to link fluctuations of flow quantities inside the source region to the acoustic pressure in the far field. It will be demonstrated that the entropy fluctuation term in the Lighthill's stress tensor plays a vital role in the noise generation process. Consequently, the understanding of the noise generation mechanisms is employed to develop a reduced-order linear acoustic model of the four-jet impingement device. Finally, three linear acoustic FJID models are used as broadband noise sources inside an engine nacelle and the acoustic scattering results are validated against far-field acoustic experimental data

    Interviewing suspects: examining the association between skills, questioning, evidence disclosure, and interview outcomes

    Get PDF
    The interviewing of suspects is an important element in the investigation of crime. However, studies concerning actual performance of investigators when undertaking such interviews remain sparse. Nevertheless, in England and Wales, since the introduction of a prescribed framework over 20 years ago, field studies have generally shown an improvement in interviewing performance, notwithstanding ongoing concerns largely relating to the more demanding aspects (such as building/maintaining rapport, intermittent summarising and the logical development of topics). Using a sample of 70 real-life interviews, the present study examined questioning and various evidence disclosure strategies (which have also been found demanding), examining their relationships between interview skills and interview outcomes. It was found that when evidence was disclosed gradually (but revealed later), interviews were generally both more skilled and involved the gaining of comprehensive accounts, whereas when evidence was disclosed either early or very late, interviews were found to be both less skilled and less likely to involve this outcome. These findings contribute towards an increased research base for the prescribed framework

    Excitation Intensity Driven PL Shifts of SiGe Islands on Patterned and Planar Si(001) Substrates: Evidence for Ge-rich Dots in Islands

    Get PDF
    For randomly nucleated SiGe/Si(001) islands, a significantly stronger blue-shift of the PL spectra as a function of the excitation intensity is observed when compared to islands grown on patterned substrates side by side within the same run in a solid source molecular beam epitaxy chamber. We ascribe this different PL behavior to the much larger inhomogeneity of the Ge distribution in islands on planar substrates when compared to islands grown on pit-patterned ones, as observed previously. 3D band-structure calculations show that Ge-rich inclusions of approximately 5 nm diameter at the apex of the islands can account for the observed differences in the PL spectra. The existence of such inclusions can be regarded as a quantum dot in an island and is in agreement with recent nano-tomography experiments

    Multimodal nonlinear imaging of atherosclerotic plaques differentiation of triglyceride and cholesterol deposits

    Get PDF
    Cardiovascular diseases in general and atherothrombosis as the most common of its individual disease entities is the leading cause of death in the developed countries. Therefore, visualization and characterization of inner arterial plaque composition is of vital diagnostic interest, especially for the early recognition of vulnerable plaques. Established clinical techniques provide valuable morphological information but cannot deliver information about the chemical composition of individual plaques. Therefore, spectroscopic imaging techniques have recently drawn considerable attention. Based on the spectroscopic properties of the individual plaque components, as for instance different types of lipids, the composition of atherosclerotic plaques can be analyzed qualitatively as well as quantitatively. Here, we compare the feasibility of multimodal nonlinear imaging combining two-photon fluorescence (TPF), coherent anti-Stokes Raman scattering (CARS) and second-harmonic generation (SHG) microscopy to contrast composition and morphology of lipid deposits against the surrounding matrix of connective tissue with diffraction limited spatial resolution. In this contribution, the spatial distribution of major constituents of the arterial wall and atherosclerotic plaques like elastin, collagen, triglycerides and cholesterol can be simultaneously visualized by a combination of nonlinear imaging methods, providing a powerful label-free complement to standard histopathological methods with great potential for in vivo application

    Force-Sensitive Autoinhibition of the von Willebrand Factor ls Mediated by Interdomain Interactions

    Get PDF
    Von Willebrand factor (VWF) plays a central role in hemostasis. Triggered by shear-stress, it adheres to platelets at sites of vascular injury. Inactivation of VWF has been associated to the shielding of its adhesion sites and proteolytic cleavage. However, the molecular nature of this shielding and its coupling to cleavage under shear-forces in flowing blood remain unknown. In this study, we describe, to our knowledge, a new force-sensory mechanism for VWF-platelet binding, which addresses these questions, based on a combination of molecular dynamics (MD) simulations, atomic force microscopy (AFM), and microfluidic experiments. Our MD simulations demonstrate that the VWF A2 domain targets a specific region at the VWF A1 domain, corresponding to the binding site of the platelet glycoprotein Ibα (GPIbα) receptor, thereby causing its blockage. This implies autoinhibition of the VWF for the binding of platelets mediated by the A1-A2 protein-protein interaction. During force-probe MD simulations, a stretching force dissociated the A1A2 complex, thereby unblocking the GPIbα binding site. Dissociation was found to be coupled to the unfolding of the A2 domain, with dissociation predominantly occurring before exposure of the cleavage site in A2, an observation that is supported by our AFM experiments. This suggests that the A2 domain prevents platelet binding in a force-dependent manner, ensuring that VWF initiates hemostasis before inactivation by proteolytic cleavage. Microfluidic experiments with an A2-deletion VWF mutant resulted in increased platelet binding, corroborating the key autoinhibitory role of the A2 domain within VWF multimers. Overall, autoinhibition of VWF mediated by force-dependent interdomain interactions offers the molecular basis for the shear-sensitive growth of VWF-platelet aggregates, and might be similarly involved in shear-induced VWF self-aggregation and other force-sensing functions in hemostasis

    Computational Prediction of Pressure and Thermal Environments in the Flame Trench With Launch Vehicles

    Get PDF
    One of the key objectives for the development of the 21st Century Space Launch Com- plex is to provide the exibility needed to support evolving launch vehicles and spacecrafts with enhanced range capacity. The launch complex needs to support various proprietary and commercial vehicles with widely di erent needs. The design of a multi-purpose main ame de ector supporting many di erent launch vehicles becomes a very challenging task when considering that even small geometric changes may have a strong impact on the pressure and thermal environment. The physical and geometric complexity encountered at the launch site require the use of state-of-the-art Computational Fluid Dynamics (CFD) tools to predict the pressure and thermal environments. Due to harsh conditions encountered in the launch environment, currently available CFD methods which are frequently employed for aerodynamic and ther- mal load predictions in aerospace applications, reach their limits of validity. This paper provides an in-depth discussion on the computational and physical challenges encountered when attempting to provide a detailed description of the ow eld in the launch environ- ment. Several modeling aspects, such as viscous versus inviscid calculations, single-species versus multiple-species ow models, and calorically perfect gas versus thermally perfect gas, are discussed. The Space Shuttle and the Falcon Heavy launch vehicles are used to study di erent engine and geometric con gurations. Finally, we provide a discussion on traditional analytical tools which have been used to provide estimates on the expected pressure and thermal loads

    Excretory/Secretory-Products of Echinococcus multilocularis Larvae Induce Apoptosis and Tolerogenic Properties in Dendritic Cells In Vitro

    Get PDF
    Parasitic helminths are inducers of chronic diseases and have evolved mechanisms to suppress the host immune response. Mostly from studies on roundworms, a picture is currently emerging that helminths secrete factors (E/S-products) that directly act on sentinels of the immune system, dendritic cells, in order to achieve an expansion of immunosuppressive, regulatory T cells (T-reg). Parasitic helminths are currently also intensely studied as therapeutic agents against autoimmune diseases and allergies, which is directly linked to their immunosuppressive activities. The immunomodulatory products of parasitic helminths are therefore of high interest for understanding immunopathology during infections and for the treatment of allergies. The present work was conducted on larvae of the tapeworm E. multilocularis, which grow like a tumor into surrounding host tissue and thus cause the lethal disease alveolar echinococcosis. The authors found that E/S-products from early infective larvae are strong inducers of tolerogenic DC in vitro and show that E/S-products of larvae of the chronic stage lead to an in vitro expansion of Foxp3+ T cells, suggesting that both the expansion of these T cells and poorly responsive DC are important for the establishment and persistence of E. multilocularis larvae within the host

    Effects of mesenchymal stromal cells versus serum on tendon healing in a controlled experimental trial in an equine model

    Get PDF
    Abstract Background Mesenchymal stromal cells (MSC) have shown promising results in the treatment of tendinopathy in equine medicine, making this therapeutic approach seem favorable for translation to human medicine. Having demonstrated that MSC engraft within the tendon lesions after local injection in an equine model, we hypothesized that they would improve tendon healing superior to serum injection alone. Methods Quadrilateral tendon lesions were induced in six horses by mechanical tissue disruption combined with collagenase application 3 weeks before treatment. Adipose-derived MSC suspended in serum or serum alone were then injected intralesionally. Clinical examinations, ultrasound and magnetic resonance imaging were performed over 24 weeks. Tendon biopsies for histological assessment were taken from the hindlimbs 3 weeks after treatment. Horses were sacrificed after 24 weeks and forelimb tendons were subjected to macroscopic and histological examination as well as analysis of musculoskeletal marker expression. Results Tendons injected with MSC showed a transient increase in inflammation and lesion size, as indicated by clinical and imaging parameters between week 3 and 6 (p < 0.05). Thereafter, symptoms decreased in both groups and, except that in MSC-treated tendons, mean lesion signal intensity as seen in T2w magnetic resonance imaging and cellularity as seen in the histology (p < 0.05) were lower, no major differences could be found at week 24. Conclusions These data suggest that MSC have influenced the inflammatory reaction in a way not described in tendinopathy studies before. However, at the endpoint of the current study, 24 weeks after treatment, no distinct improvement was observed in MSC-treated tendons compared to the serum-injected controls. Future studies are necessary to elucidate whether and under which conditions MSC are beneficial for tendon healing before translation into human medicine
    • …
    corecore