3,286 research outputs found

    Magnon-photon coupling in the noncollinear magnetic insulator Cu 2 OSeO 3

    Get PDF
    Anticrossing behavior between magnons in the noncollinear chiral magnet Cu2OSeO3 and a two-mode X-band microwave resonator was studied in the temperature range 5–100 K. In the field-induced ferrimagnetic phase, we observed a strong-coupling regime between magnons and two microwave cavity modes with a cooperativity reaching 3600. In the conical phase, cavity modes are dispersively coupled to a fundamental helimagnon mode, and we demonstrate that the magnetic phase diagram of Cu2OSeO3 can be reconstructed from the measurements of the cavity resonance frequency. In the helical phase, a hybridized state of a higher-order helimagnon mode and a cavity mode—a helimagnon polariton—was found. Our results reveal a class of magnetic systems where strong coupling of microwave photons to nontrivial spin textures can be observed

    Management of Devastating Ocular Trauma--Experience of Maxillofacial Surgeons Deployed to a Forward Field Hospital

    Get PDF
    Combat-related eye injuries continue to increase in frequency and are generally secondary to Improvised Explosive Devices. Many ocular injuries are potentially preventable by the wearing of ballistic eye protection. The management of penetrating eye trauma is normally outside the routine practice of maxillofacial surgeons in the UK. The aim of this paper is to describe the surgical techniques used in the modern management of devastating ocular trauma including selected case examples managed by British military maxillofacial surgeons deployed to Afghanistan

    Management and drivers of change of pollinating insects and pollination services. National Pollinator Strategy: for bees and other pollinators in England, Evidence statements and Summary of Evidence

    Get PDF
    These Evidence Statements provide up-to-date information on what is known (and not known) about the status, values, drivers of change, and responses to management of UK insect pollinators (as was September 2018). This document has been produced to inform the development of England pollinator policy, and provide insight into the evidence that underpins policy decision-making. This document sits alongside a more detailed Summary of Evidence (Annex I) document written by pollinator experts. For information on the development of the statements, and confidence ratings assigned to them, please see section ?Generation of the statements? below. Citations for these statements are contained in the Summary of Evidence document

    Riding the seismic waves: Re-blending teacher education in response to changing demands

    Get PDF
    Editors: G. Williams, P. Statham, N. Brown & B. Cleland ISBN Proceedings USB: 978-1-86295-644-5 published by the University of TasmaniaBlended learning plays an important role in many tertiary institutions but little has been written about the implementation of blended learning in times of adversity, natural disaster or crisis. This paper describes how, in the wake of the 22 February Canterbury earthquake, five teacher educators responded to crisis-driven changing demands and changing directions. Our narratives describe how blended learning provided students in initial teacher education programmes with some certainty and continuity during a time of civil emergency. The professional learning generated from our experiences provides valuable insights for designing and preparing for blended learning in times of crisis, as well as developing resilient blended learning programmes for the future

    Continuous-wave room-temperature diamond maser

    Get PDF
    The maser, older sibling of the laser, has been confined to relative obscurity due to its reliance on cryogenic refrigeration and high-vacuum systems. Despite this it has found application in deep-space communications and radio astronomy due to its unparalleled performance as a low-noise amplifier and oscillator. The recent demonstration of a room-temperature solid- state maser exploiting photo-excited triplet states in organic pentacene molecules paves the way for a new class of maser that could find applications in medicine, security and sensing, taking advantage of its sensitivity and low noise. However, to date, only pulsed operation has been observed in this system. Furthermore, organic maser molecules have poor thermal and mechanical properties, and their triplet sub-level decay rates make continuous emission challenging: alternative materials are therefore required. Therefore, inorganic materials containing spin-defects such as diamond and silicon carbide have been proposed. Here we report a continuous-wave (CW) room-temperature maser oscillator using optically pumped charged nitrogen-vacancy (NV) defect centres in diamond. This demonstration unlocks the potential of room-temperature solid-state masers for use in a new generation of microwave devices.Comment: 7 pages, 4 figure

    The neutral silicon-vacancy center in diamond: spin polarization and lifetimes

    Get PDF
    We demonstrate optical spin polarization of the neutrally-charged silicon-vacancy defect in diamond (SiV0\mathrm{SiV^{0}}), an S=1S=1 defect which emits with a zero-phonon line at 946 nm. The spin polarization is found to be most efficient under resonant excitation, but non-zero at below-resonant energies. We measure an ensemble spin coherence time T2>100 μsT_2>100~\mathrm{\mu s} at low-temperature, and a spin relaxation limit of T1>25 sT_1>25~\mathrm{s}. Optical spin state initialization around 946 nm allows independent initialization of SiV0\mathrm{SiV^{0}} and NV\mathrm{NV^{-}} within the same optically-addressed volume, and SiV0\mathrm{SiV^{0}} emits within the telecoms downconversion band to 1550 nm: when combined with its high Debye-Waller factor, our initial results suggest that SiV0\mathrm{SiV^{0}} is a promising candidate for a long-range quantum communication technology

    Quantifying the impact of Psylliodes chrysocephala injury on the productivity of oilseed rape

    Get PDF
    BACKGROUND: Current European Union and United Kingdom legislation prohibits the use of neonicotinoid insecticidal seedtreatments in oilseed rape (OSR,Brassica napus). This ban, and the reduction in efficacy of pyrethroid insecticide sprays dueto resistance, has exacerbated pest pressure from the cabbage stemflea beetle (Psylliodes chrysocephala) in winter OSR. Wequantified the direct impact of P. chrysocephalainjury on the productivity of OSR. Leaf area was removed from young plantsto simulate differing intensities of adult feeding injury alone or in combination with varying larval infestation levels. RESULTS: OSR can compensate for up to 90% leaf area loss at early growth stages, with no meaningful effect on yield. Significant impacts were observed with high infestations of more thanfive larvae per plant; plants were shorter, produced fewerflowers and pods, with fewer seeds per pod which had lower oil content and higher glucosinolate content. Such effects werenot recorded whenfive larvae or fewer were present. CONCLUSION: These data confirm the yield-limiting potential of the larval stages ofP. chrysocephalabut suggest that the current action thresholds which trigger insecticide application for both adult and larval stages (25% leaf area loss andfive larvae/plant, respectively) are potentially too low as they are below the physiological injury level where plants can fully compensatefor damage. Further research infield conditions is needed to define physiological thresholds more accurately as disparity mayresult in insecticide applications that are unnecessary to protect yield and may in turn exacerbate the development and spread of insecticide resistance in P. chrysocephala
    corecore