30 research outputs found

    The Effect of Moisture on Ply-Bond Strength of Paperboard

    Get PDF
    This study was carried out to evaluate the effect on the ply-bond strength of the moisture content of the plies of a multi-ply sheet at the time of joining. Two-ply sheets were formed with the plies at various moisture contents at joining. The resulting ply-bonds were evaluated by three methods, viz. Instron peel, Mullen ply-bond, and z-direction tensile. Each method showed the same trend of ply-bond strength dependence on moisture and within the range of experimental error the average values of the three techniques correlated well. This study showed that the moisture content of the plies at joining is extremely critical in the ply-bond strength of paperboard. The practical minimum moisture content at which a ply-bond was possible was 20%. There was a gradual increase of ply-bond strength with increasing moisture content of the plies until a critical moisture range of 85 to 90% was reached. In this narrow range of moisture content the ply-bond strength increased two to fourfold. Once the critical range of moisture content was exceeded, no further increase in ply-bond strength occurred because the failure of the two-ply assembly occurred within one of the plies. This was confirmed by experiments which showed that the single ply (intraply) strength was of the same magnitude as the two-ply bond strength

    Use of quaternary ammonium compounds to remove salmonella contamination from meat products

    Get PDF
    A composition and method for removing and preventing Salmonella contamination of meat products, in particular poultry, is disclosed. The composition comprises an effective amount of a quaternary ammonium compound in an aqueous solution. The quaternary ammonium compound are selected from the group consisting of alkylpyridinium, tetra-alkylammonium, and alkylalicyclic ammonium salts. Preferably, the quaternary ammonium compounds are cetylpyridinium chloride and cetylpyridinium bromide. Mutagenicity studies are also disclosed

    Broad spectrum prevention and removal of microbial contamination of food by quaternary ammonium compounds

    Get PDF
    A method of using quaternary ammonium compounds for inhibiting attachment of and removing a broad spectrum of foodborne microbial contamination from food products is described. The method uses quaternary ammonium compounds for inhibiting attachment of and removing microorganisms such as, Staphylococcus, Campylobacter, Arcobacter, Listeria, Aeromonas, Bacillus, Salmonella, non-toxin producing Escherichia, and pathogenic toxin-producing Escherichia such as O157:H7, fungi such as Aspergillus flavus and Penicillium chrysogenum, and parasites such as Entameba histolytica from a broad range of food. The foods that can be treated by this method are meat, seafood, vegetables, and fruit

    Concentrated, non-foaming solution of quaternary ammonium compounds and methods of use

    Get PDF
    A concentrated quaternary ammonium compound (QAC) solution with a concentration from greater than about 10% by weight and at least one solubility enhancing agent, such as an alcohol, is disclosed. A diluted QAC solution is used to contact food products to prevent microbial growth on the food products from a broad spectrum of foodborne microbial contamination. A method of contacting the food products with the dilute QAC for an application time of at least 0.1 second is disclosed. The foods that can be treated by this method are meat and meat products, seafood, vegetables, fruit, dairy products, pet foods and snacks, and any other food that can be treated and still retain its appearance and texture. One of the treatment methods is spraying and misting the QAC solutions on the food products for an application time of at least 0.1 second to prevent broad spectrum foodborne microbial contamination

    Concentrated, non-foaming solution of quaternary ammonium compounds and methods of use

    Get PDF
    A concentrated quaternary ammonium compound (QAC) solution with a concentration greater than about 10% by weight and at least one solubility enhancing agent, such as an alcohol, is disclosed. A diluted QAC solution is useful on food products to prevent microbial growth on the food from a broad spectrum of foodborne microbial contamination. Also disclosed is a method of contacting food products with the dilute QAC for an application time of at least 0.1 second. Foods that can be treated by this method are meat and meat products, seafood, vegetables, fruit, dairy products, pet foods and snacks, and any other food that can be treated and still retain its appearance and texture. One of the treatment methods is spraying and misting the QAC solutions on the food products for an application time of at least 0.1 second to prevent broad spectrum foodborne microbial contamination

    Concentrated, non-foaming solution of quaternary ammonium compounds and methods of use

    Get PDF
    A concentrated quaternary ammonium compound (QAC) solution with a concentration from greater than about 10% by weight and at least one solubility enhancing agent, such as an alcohol, is disclosed. A diluted QAC solution is used to contact food products to prevent microbial growth on the food products from a broad spectrum of foodborne microbial contamination. A method of contacting the food products with the dilute QAC for an application time of at least 0.1 second is disclosed. The foods that can be treated by this method are meat and meat products, seafood, vegetables, fruit, dairy products, pet foods and snacks, and any other food that can be treated and still retain its appearance and texture. One of the treatment methods is spraying and misting the QAC solutions on the food products for an application time of at least 0.1 second to prevent broad spectrum foodborne microbial contamination

    Children must be protected from the tobacco industry's marketing tactics.

    Get PDF

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p&lt;0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p&lt;0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p&lt;0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP &gt;5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe
    corecore