61 research outputs found

    A Caribbean evaluation of public versus private drinking water provision: the case of St. Maarten, Netherlands Antilles

    Get PDF
    This article assesses how a small island state can choose the best option in the process of private sector involvement. It reviews the decision process to involve or not the private sector in water and sanitation supply and in which way. Nine criteria are used to make the choice. A careful weighing process is necessary, taking the history into account, looking at the special institutional situation in the country and involving the stakeholders, and even then there is no guarantee of success! An existing public utility may be better placed to look after the modernisation and extension of the water and sanitation system than a new private firm

    A Case Study of Excreta Disposal Following the 2006 Java Earthquake*

    Get PDF
    Providing safe excreta disposal following disasters is important for disease prevention and the safety and dignity of the affected population. This is challenging because every emergency varies due to the nature of the disaster, local conditions and the characteristics of the affected population. This paper investigates the impact of the 2006 Java earthquake on excreta disposal needs and the response to those needs. Relevant documents were retrieved from the ReliefWeb database, complemented by a literature search. The case study highlights gaps in rapidly providing latrines on a large scale. Three months after the disaster, only 57% of the latrines targeted had been provided. One way to address this problem is to better understand the factors affecting excreta disposal needs and response, allowing appropriate solutions to be identified more effectively

    Effect of Lactate on the Microbial Community and Process Performance of an EBPR System

    Get PDF
    Candidatus Accumulibacter phosphatis is in general presented as the dominant organism responsible for the biological removal of phosphorus in activated sludge wastewater treatment plants. Lab-scale enhanced biological phosphorus removal (EBPR) studies, usually use acetate as carbon source. However, the complexity of the carbon sources present in wastewater could allow other potential poly-phosphate accumulating organism (PAOs), such as putative fermentative PAOs (e.g., Tetrasphaera), to proliferate in coexistence or competition with Ca. Accumulibacter. This research assessed the effects of lactate on microbial selection and process performance of an EBPR lab-scale study. The addition of lactate resulted in the coexistence of Ca. Accumulibacter and Tetrasphaera in a single EBPR reactor. An increase in anaerobic glycogen consumption from 1.17 to 2.96 C-mol/L and anaerobic PHV formation from 0.44 to 0.87 PHV/PHA C-mol/C-mol corresponded to the increase in the influent lactate concentration. The dominant metabolism shifted from a polyphosphate-accumulating metabolism (PAM) to a glycogen accumulating metabolism (GAM) without EBPR activity. However, despite the GAM, traditional glycogen accumulating organisms (GAOs; Candidatus Competibacter phosphatis and Defluvicoccus) were not detected. Instead, the 16s RNA amplicon analysis showed that the genera Tetrasphaera was the dominant organism, while a quantification based on FISH-biovolume indicated that Ca. Accumulibacter remained the dominant organism, indicating certain discrepancies between these microbial analytical methods. Despite the discrepancies between these microbial analytical methods, neither Ca. Accumulibacter nor Tetrasphaera performed biological phosphorus removal by utilizing lactate as carbon source

    Flood Resilience Assessment In Urban Drainage Systems Through Multi-Objective Optimisation

    Full text link
    In future years, economic development, urbanisation and heavy rainfall events are expected to increase in urban areas, in particular in developing countries. It is well known that urban development has a strong impact on the water cycle such as increase of flood peaks and volume, decrease of base flow, hydraulic stress and water pollution. Resilience measures are still needed to improve urban flood risk, the possibilities to provide indicators that could be used to characterize urban resilience related to flooding is outmost importance. The work described here presents an optimisation framework for urban drainage rehabilitation that incorporates in the decision space the concept of resilience in order to find an optimal rehabilitation strategy. The approach has been tested in the City of Dhaka, Bangladesh by coupling 1D/2D model of the drainage system and linked within the optimisation algorithm. The preliminary results obtained suggest that the proposed approach could be effective in order to reach acceptable level of flood resilience of urban drainage systems, balancing investment and risk within the systems. Further work is recommended to expand and generalize the methodology

    A Case Study of Excreta Disposal Following the 2006 Java Earthquake*

    Full text link
    Providing safe excreta disposal following disasters is important for disease prevention and the safety and dignity of the affected population. This is challenging because every emergency varies due to the nature of the disaster, local conditions and the characteristics of the affected population. This paper investigates the impact of the 2006 Java earthquake on excreta disposal needs and the response to those needs. Relevant documents were retrieved from the ReliefWeb database, complemented by a literature search. The case study highlights gaps in rapidly providing latrines on a large scale. Three months after the disaster, only 57% of the latrines targeted had been provided. One way to address this problem is to better understand the factors affecting excreta disposal needs and response, allowing appropriate solutions to be identified more effectively

    Economic assessment of nature-based solutions to reduce flood risk and enhance co-benefits

    Get PDF
    Flooding is expected to increase due to climate change, urbanisation, and land use change. To address this issue, Nature-Based Solutions (NBSs) are often adopted as innovative and sustainable flood risk management methods. Besides the flood risk reduction benefits, NBSs offer co-benefits for the environment and society. However, these co-benefits are rarely considered in flood risk management due to the inherent complexities of incorporating them into economic assessments. This research addresses this gap by developing a comprehensive methodology that integrates the monetary analysis of co-benefits with flood risk reduction in economic assessments. In doing so, it aspires to provide a more holistic view of the impact of NBS in flood risk management. The assessment employs a framework based on life-cycle cost-benefit analysis, offering a systematic and transparent assessment of both costs and benefits over time supported by key indicators like net present value and benefit cost ratio. The methodology has been applied to the Tamnava basin in Serbia, where significant flooding occurred in 2014 and 2020. The methodology offers valuable insights for practitioners, researchers, and planners seeking to assess the co-benefits of NBS and integrate them into economic assessments. The results show that when considering flood risk reduction alone, all considered measures have higher costs than the benefits derived from avoiding flood damage. However, when incorporating co-benefits, several NBS have a net positive economic impact, including afforestation/reforestation and retention ponds with cost-benefit ratios of 3.5 and 5.6 respectively. This suggests that incorporating co-benefits into economic assessments can significantly increase the overall economic efficiency and viability of NBS

    Unravelling the removal mechanisms of bacterial and viral surrogates in aerobic granular sludge systems

    Get PDF
    The aerobic granular sludge (AGS) process is an effective wastewater treatment technology for organic matter and nutrient removal that has been introduced in the market rapidly. Until now, limited information is available on AGS regarding the removal of bacterial and viral pathogenic organisms present in sewage. This study focussed on determining the relation between reactor operational conditions (plug flow feeding, turbulent aeration and settling) and physical and biological mechanisms on removing two faecal surrogates, Escherichia coli and MS2 bacteriophages. Two AGS laboratory-scale systems were separately fed with influent spiked with 1.0 × 106 CFU/100 mL of E. coli and 1.3 × 108 PFU/100 mL of MS2 bacteriophages and followed during the different operational phases. The reactors contained only granular sludge and no flocculent sludge. Both systems showed reductions in the liquid phase of 0.3 Log10 during anaerobic feeding caused by a dilution factor and attachment of the organisms on the granules. Higher removal efficiencies were achieved during aeration, approximately 1 Log10 for E. coli and 0.6 Log10 for the MS2 bacteriophages caused mainly by predation. The 18S sequencing analysis revealed high operational taxonomic units (OTUs) of free-living protozoa genera Rhogostoma and Telotrochidium concerning the whole eukaryotic community. Attached ciliates propagated after the addition of the E. coli, an active contribution of the genera Epistylis, Vorticella, and Pseudovorticella was found when the reactor reached stability. In contrast, no significant growth of predators occurred when spiking the system with MS2 bacteriophages, indicating a low contribution of protozoa on the phage removal. Settling did not contribute to the removal of the studied bacterial and viral surrogates.M.L. Barrios-Hernández acknowledges the Technological Institute of Costa Rica for providing the fellowship (Grant Number 007-2014-M) to pursue her PhD programme (2016-2020) at IHE-Delft, the Netherlands. K. Mora-Cabrera acknowledges the Generalitat Valenciana (GRISOLIAP/2017/173) and the European Social Funds (BEFPI/2019/065) for their financial support

    Are There Seasonal Variations in Faecal Contamination of Exposure Pathways? An Assessment in a Low–Income Settlement in Uganda

    No full text
    Sanitation infrastructure are not able to cope with the increasing population in low-income countries, which leaves populations exposed to faecal contamination from multiple pathways. This study evaluated public health risk (using SaniPath) in a low-income community during the dry season, to identify the dominant exposure pathways, and compare this data to existing data for the rainy season, questioning the assumption that risk of faecal contamination is higher in the rainy season. SaniPath was used to collect and assess exposure and environmental data, and to generate risk profiles for each pathway. In the dry season the highest exposure frequency was for bathing and street food, exposure frequency generally increased, and seasonal variation was found in five pathways. The highest hazards in the dry season were through contact with drains, soil, and street food. Seasonal variation was found in the contamination of open drains and street food, with higher levels of Escherichia coli (E. coli) in the dry season. Open drains were identified as the most dominant risk pathway in both seasons, but risk was higher in the dry season. This highlights the complex nature of seasonal variation of faecal risk, and questions the assumption that risk is higher in the rainy season

    Applications of Activated Sludge Models

    Get PDF
    In 1982 the International Association on Water Pollution Research and Control (IAWPRC), as it was then called, established a Task Group on Mathematical Modelling for Design and Operation of Activated Sludge Processes. The aim of the Task Group was to create a common platform that could be used for the future development of models for COD and N removal with a minimum of complexity. As the collaborative result of the work of several modelling groups, the Activated Sludge Model No. 1 (ASM1) was published in 1987, exactly 25 years ago. The ASM1 can be considered as the reference model, since this model triggered the general acceptance of wastewater treatment modelling, first in the research community and later on also in practice. ASM1 has become a reference for many scientific and practical projects, and has been implemented (in some cases with modifications) in most of the commercial software available for modelling and simulation of plants for N removal. The models have grown more complex over the years, from ASM1, including N removal processes, to ASM2 (and its variations) including P removal processes, and ASM3 that corrects the deficiencies of ASM1 and is based on a metabolic approach to modelling. So far, ASM1 is the most widely applied. Applications of Activated Sludge Models has been prepared in celebration of 25 years of ASM1 and in tribute to the activated sludge modelling pioneer, the late Professor G.v.R. Marrais. It consists of a dozen of practical applications for ASM models to model development, plant optimization, extension, upgrade, retrofit and troubleshooting, carried out by the members of the Delft modelling group over the last two decades
    corecore