221 research outputs found

    Reconsidering the generation time hypothesis based on nuclear ribosomal ITS sequence comparisons in annual and perennial angiosperms

    Get PDF
    17 pages, 3 figures, 5 tables.-- PMID: 19113991 [PubMed].[Background] Differences in plant annual/perennial habit are hypothesized to cause a generation time effect on divergence rates. Previous studies that compared rates of divergence for internal transcribed spacer (ITS1 and ITS2) sequences of nuclear ribosomal DNA (nrDNA) in angiosperms have reached contradictory conclusions about whether differences in generation times (or other life history features) are associated with divergence rate heterogeneity. We compared annual/perennial ITS divergence rates using published sequence data, employing sampling criteria to control for possible artifacts that might obscure any actual rate variation caused by annual/perennial differences.[Results] Relative rate tests employing ITS sequences from 16 phylogenetically-independent annual/perennial species pairs rejected rate homogeneity in only a few comparisons, with annuals more frequently exhibiting faster substitution rates. Treating branch length differences categorically (annual faster or perennial faster regardless of magnitude) with a sign test often indicated an excess of annuals with faster substitution rates. Annuals showed an approximately 1.6-fold rate acceleration in nucleotide substitution models for ITS. Relative rates of three nuclear loci and two chloroplast regions for the annual Arabidopsis thaliana compared with two closely related Arabidopsis perennials indicated that divergence was faster for the annual. In contrast, A. thaliana ITS divergence rates were sometimes faster and sometimes slower than the perennial. In simulations, divergence rate differences of at least 3.5-fold were required to reject rate constancy in > 80 % of replicates using a nucleotide substitution model observed for the combination of ITS1 and ITS2. Simulations also showed that categorical treatment of branch length differences detected rate heterogeneity > 80% of the time with a 1.5-fold or greater rate difference.[Conclusion] Although rate homogeneity was not rejected in many comparisons, in cases of significant rate heterogeneity annuals frequently exhibited faster substitution rates. Our results suggest that annual taxa may exhibit a less than 2-fold rate acceleration at ITS. Since the rate difference is small and ITS lacks statistical power to reject rate homogeneity, further studies with greater power will be required to adequately test the hypothesis that annual and perennial plants have heterogeneous substitution rates. Arabidopsis sequence data suggest that relative rate tests based on multiple loci may be able to distinguish a weak acceleration in annual plants. The failure to detect rate heterogeneity with ITS in past studies may be largely a product of low statistical power.This work was supported by a doctoral fellowship to D. F. Soria-Hernanz from the Spanish Ministerio de Educación y Ciencia, graduate support from Georgetown University and the Department of Biology, the Cosmos Foundation, and a National Science Foundation grant to M.B.H. (DEB9983014). Publication charges supported by the Department of Biology, Georgetown University.Peer reviewe

    Parallel rate heterogeneity in chloroplast and mitochondrial genomes of Brazil nut trees (Lecythidaceae) is consistent with lineage effects

    Get PDF
    We investigated whether relative rates of divergence were correlated between the mitochondrial and chloroplast genomes as expected under lineage effects or were genome specific as expected with locus-specific effects. Five mitochondrial noncoding regions (nad1B_C, nad4exon1_2, nad7exon2_3, nad7exon3_4, and rps14-cob) for 21 samples from Lecythidaceae were sequenced. Three chloroplast regions (rpl20-5′rps12, trnS-trnG, and psbA-trnH) were sequenced to expand the taxa in an existing data set. Absolute rates of nucleotide and insertion and deletion (indel) changes were 13 times faster in the chloroplast genome than in the mitochondrial genome. Similar indel length frequency distributions for both organelles suggested that common mechanisms were responsible for generating indels. Molecular clock tests applied to phylogenetic trees estimated from mitochondrial and chloroplast sequences revealed global rate heterogeneity of nucleotide substitution. Maximum likelihood and Tajima's 1D relative rate tests show that Lecythis zabucajo exhibited a rate acceleration for both the mitochondrial and chloroplast sequences. Whereas Eschweilera romeu-cardosoi showed a significant rate slowdown for chloroplast sequences, the mitochondrial sequences for 3 Eschweilera taxa showed evidence for a rate slowdown only when compared with L. zabucajo. Significant rate heterogeneity was also observed for indel changes in the mitochondrial genome but not for the chloroplast. The lack of mitochondrial nucleotide changes for some taxa as well as chloroplast indel homoplasy may have limited the power of relative rate tests to detect rate variation. Relative ratio tests consistently indicated rate proportionality among branch lengths between the mitochondrial and chloroplast phylogenetic trees. The relative ratio tests showed that taxa possessing rate heterogeneity had parallel relative divergence rates in both mitochondrial and chloroplast sequences as expected under lineage effects. A neutral replication-dependent model of rate heterogeneity for both nucleotide and indel changes provides a simple explanation for common patterns of rate heterogeneity across the 2 organelle genomes in Lecythidaceae. The lineage effects observed here were uncoupled from annual/perennial habit because all the species from this study are perennial. © The Author 2008. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved

    Patterns and relative rates of nucleotide and insertion/deletion evolution at six chloroplast intergenic regions in new world species of the Lecythidaceae

    Get PDF
    Insertions and deletions (indels) in chloroplast noncoding regions are common genetic markers to estimate population structure and gene flow, although relatively little is known about indel evolution among recently diverged lineages such as within plant families. Because indel events tend to occur nonrandomly along DNA sequences, recurrent mutations may generate homoplasy for indel haplotypes. This is a potential problem for population studies, because indel haplotypes may be shared among populations after recurrent mutation as well as gene flow. Furthermore, indel haplotypes may differ in fitness and therefore be subject to natural selection detectable as rate heterogeneity among lineages. Such selection could contribute to the spatial patterning of cpDNA haplotypes, greatly complicating the interpretation of cpDNA population structure. This study examined both nucleotide and indel cpDNA variation and divergence at six noncoding regions (psbB-psbH, atpB-rbcL, trnL-trnH, rpl20-5′ rps12, trnS-trnG, and trnH-psbA) in 16 individuals from eight species in the Lecythidaceae and a Sapotaceae outgroup. We described patterns of cpDNA changes, assessed the level of indel homoplasy, and tested for rate heterogeneity among lineages and regions. Although regression analysis of branch lengths suggested some degree of indel homoplasy among the most divergent lineages, there was little evidence for indel homoplasy within the Lecythidaceae. Likelihood ratio tests applied to the entire phylogenetic tree revealed a consistent pattern rejecting a molecular clock. Tajima's 1D and 2D tests revealed two taxa with consistent rate heterogeneity, one showing relatively more and one relatively fewer changes than other taxa. In general, nucleotide changes showed more evidence of rate heterogeneity than did indel changes. The rate of evolution was highly variable among the six cpDNA regions examined, with the trnS-trnG and trnH-psbA regions showing as much as 10% and 15% divergence within the Lecythidaceae. Deviations from rate homogeneity in the two taxa were constant across cpDNA regions, consistent with lineage-specific rates of evolution rather than cpDNA region-specific natural selection. There is no evidence that indels are more likely than nucleotide changes to experience homoplasy within the Lecythidaceae. These results support a neutral interpretation of cpDNA indel and nucleotide variation in population studies within species such as Corythophora alta. © Society for Molecular Biology and Evolution 2003; all rights reserved

    Preliminary investigation of plasma levels of sex hormones and human growth factor(s), and P300 latency as correlates to cognitive decline as a function of gender

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aging is marked by declines in levels of many sex hormones and growth factors, as well as in cognitive function. The P300 event-related potential has been established as a predictor of cognitive decline. We decided to determine if this measure, as well as 2 standard tests of memory and attention, may be correlated with serum levels of sex hormones and growth factors, and if there are any generalizations that could be made based on these parameters and the aging process.</p> <p>Findings</p> <p>In this large clinically based preliminary study several sex-stratified associations between hormone levels and cognition were observed, including (1) for males aged 30 to 49, both IGF-1 and IGFBP-3 significantly associated negatively with prolonged P300 latency; (2) for males aged 30 to 49, the spearman correlation between prolonged P300 latency and low free testosterone was significant; (3) for males aged 60 to 69, there was a significant negative correlation between P300 latency and DHEA levels; (4) for females aged 50 to 59 IGFBP-3 significantly associated negatively with prolonged P300 latency; (5) for females at all age periods, estrogen and progesterone were uncorrelated with P300 latency; and (6) for females aged 40 to 69, there was significant negative correlation between DHEA levels and P300 latency. Moreover there were no statistically significant correlations between any hormone and Wechsler Memory Scale-III (WMS-111). However, in females, there was a significant positive correlation between estrogen levels and the number of Attention Deficit Disorder (ADD) complaints.</p> <p>Conclusion</p> <p>Given certain caveats including confounding factors involving psychiatric and other chronic diseases as well as medications, the results may still have important value. If these results could be confirmed in a more rigorously controlled investigation, it may have important value in the diagnosis, prevention and treatment of cognitive impairments and decline.</p

    Ethical, legal, and social issues in the Earth BioGenome Project.

    Get PDF
    The Earth BioGenome Project (EBP) is an audacious endeavor to obtain whole-genome sequences of representatives from all eukaryotic species on Earth. In addition to the project's technical and organizational challenges, it also faces complicated ethical, legal, and social issues. This paper, from members of the EBP's Ethical, Legal, and Social Issues (ELSI) Committee, catalogs these ELSI concerns arising from EBP. These include legal issues, such as sample collection and permitting; the applicability of international treaties, such as the Convention on Biological Diversity and the Nagoya Protocol; intellectual property; sample accessioning; and biosecurity and ethical issues, such as sampling from the territories of Indigenous peoples and local communities, the protection of endangered species, and cross-border collections, among several others. We also comment on the intersection of digital sequence information and data rights. More broadly, this list of ethical, legal, and social issues for large-scale genomic sequencing projects may be useful in the consideration of ethical frameworks for future projects. While we do not-and cannot-provide simple, overarching solutions for all the issues raised here, we conclude our perspective by beginning to chart a path forward for EBP's work

    Ethical, legal, and social issues in the Earth BioGenome Project

    Get PDF
    The Earth BioGenome Project (EBP) is an audacious endeavor to obtain whole-genome sequences of representatives from all eukaryotic species on Earth. In addition to the project’s technical and organizational challenges, it also faces complicated ethical, legal, and social issues. This paper, from members of the EBP’s Ethical, Legal, and Social Issues (ELSI) Committee, catalogs these ELSI concerns arising from EBP. These include legal issues, such as sample collection and permitting; the applicability of international treaties, such as the Convention on Biological Diversity and the Nagoya Protocol; intellectual property; sample accessioning; and biosecurity and ethical issues, such as sampling from the territories of Indigenous peoples and local communities, the protection of endangered species, and cross-border collections, among several others. We also comment on the intersection of digital sequence information and data rights. More broadly, this list of ethical, legal, and social issues for large-scale genomic sequencing projects may be useful in the consideration of ethical frameworks for future projects. While we do not—and cannot—provide simple, overarching solutions for all the issues raised here, we conclude our perspective by beginning to chart a path forward for EBP’s work

    Representational predicaments at three Hong Kong sites

    Full text link
    Representational predicaments arise when a job incumbent believes that attributions and images assumed by dominant authorities unfavourably ignore, or disproportionately and unfavourably emphasize, aspects of the incumbent\u27s own work and social identity. This is likely to happen when the incumbent does not have a close relationship with a dominant authority, and when power asymmetries give the former relatively little control over which aspects of their work and social identity are made visible or invisible to the latter. We draw on critical incident interviews from three organizations to illustrate a typology of six types of representational predicament: invasive spotlighting, idiosyncratic spotlighting, embedded background work, paradoxical social visibility, standardization of work processes, and standardization of work outputs. We analyse responses to representational predicaments according to whether they entailed exit, voice, loyalty, or neglect. Incumbents tended to respond with loyalty if they felt able and willing to accommodate their work behaviour and/or social identity to the dominant representations, and if there were sufficient compensatory factors, such as intrinsic rewards from the work or solidarity with colleagues. Exit or neglect appeared to reflect the belief that it was impossible to accommodate. Power asymmetries appeared to deter voice. Individual employees with a close and cordial working relationship with a member of a dominant authority group, or who were relationally networked to one, appeared not to experience representational predicaments

    Clinical history and management recommendations of the smooth muscle dysfunction syndrome due to ACTA2 arginine 179 alterations

    Get PDF
    Smooth muscle dysfunction syndrome (SMDS) due to heterozygous ACTA2 arginine 179 alterations is characterized by patent ductus arteriosus, vasculopathy (aneurysm and occlusive lesions), pulmonary arterial hypertension, and other complications in smooth muscle-dependent organs. We sought to define the clinical history of SMDS to develop recommendations for evaluation and management. Medical records of 33 patients with SMDS (median age 12 years) were abstracted and analyzed. All patients had congenital mydriasis and related pupillary abnormalities at birth and presented in infancy with a patent ductus arteriosus or aortopulmonary window. Patients had cerebrovascular disease characterized by small vessel disease (hyperintense periventricular white matter lesions; 95%), intracranial artery stenosis (77%), ischemic strokes (27%), and seizures (18%). Twelve (36%) patients had thoracic aortic aneurysm repair or dissection at median age of 14 years and aortic disease was fully penetrant by the age of 25 years. Three (9%) patients had axillary artery aneurysms complicated by thromboembolic episodes. Nine patients died between the ages of 0.5 and 32 years due to aortic, pulmonary, or stroke complications, or unknown causes. Based on these data, recommendations are provided for the surveillance and management of SMDS to help prevent early-onset life-threatening complications
    corecore