31 research outputs found

    Experimental Investigation of Rotating Stall in a Research Multistage Axial Compressor

    Get PDF
    A collection of experimental data acquired in the NASA low-speed multistage axial compressor while operated in rotating stall is presented in this paper. The compressor was instrumented with high-response wall pressure modules and a static pressure disc probe for in-flow measurement, and a split-fiber probe for simultaneous measurements of velocity magnitude and flow direction. The data acquired to-date have indicated that a single fully developed stall cell rotates about the flow annulus at 50.6% of the rotor speed. The stall phenomenon is substantially periodic at a fixed frequency of 8.29 Hz. It was determined that the rotating stall cell extends throughout the entire compressor, primarily in the axial direction. Spanwise distributions of the instantaneous absolute flow angle, axial and tangential velocity components, and static pressure acquired behind the first rotor are presented in the form of contour plots to visualize different patterns in the outer (midspan to casing) and inner (hub to mid-span) flow annuli during rotating stall. In most of the cases observed, the rotating stall started with a single cell. On occasion, rotating stall started with two emerging stall cells. The root cause of the variable stall cell count is unknown, but is not attributed to operating procedures

    Application of Synthetic Jets to Reduce Stator Flow Separation in a Low Speed Axial Compressor

    Get PDF
    Flow control using synthetic jet injection has been applied in a low speed axial compressor. The synthetic jets were applied from the suction surface of a stator vane via a span-wise row of slots pitched in the streamwise direction. Actuation was provided externally from acoustic drivers coupled to the vane tip via flexible tubing. The acoustic resonance characteristics of the system, and the resultant jet velocities were obtained. The effects on the separated flow field for various jet velocities and frequencies were explored. Total pressure loss reductions across the vane passage were measured. The effect of synthetic jet injection was shown to be comparable to that of pulsatory injection with mass addition for stator vanes which had separated flow. While only a weak dependence of the beneficial effect was noted based on the excitation frequency, a strong dependence on the amplitude was observed at all frequencies

    Impulsive Injection for Compressor Stator Separation Control

    Get PDF
    Flow control using impulsive injection from the suction surface of a stator vane has been applied in a low speed axial compressor. Impulsive injection is shown to significantly reduce separation relative to steady injection for vanes that were induced to separate by an increase in vane stagger angle of 4 degrees. Injected flow was applied to the airfoil suction surface using spanwise slots pitched in the streamwise direction. Injection was limited to the near-hub region, from 10 to 36 percent of span, to affect the dominant loss due to hub leakage flow. Actuation was provided externally using high-speed solenoid valves closely coupled to the vane tip. Variations in injected mass, frequency, and duty cycle are explored. The local corrected total pressure loss across the vane at the lower span region was reduced by over 20 percent. Additionally, low momentum fluid migrating from the hub region toward the tip was effectively suppressed resulting in an overall benefit which reduced corrected area averaged loss through the passage by 4 percent. The injection mass fraction used for impulsive actuation was typically less than 0.1 percent of the compressor through flow

    Closed Loop Active Flow Separation Detection and Control in a Multistage Compressor

    Get PDF
    Active closed loop flow control was successfully demonstrated on a full annulus of stator vanes in a low speed axial compressor. Two independent methods of detecting separated flow conditions on the vane suction surface were developed. The first technique detects changes in static pressure along the vane suction surface, while the second method monitors variation in the potential field of the downstream rotor. Both methods may feasibly be used in future engines employing embedded flow control technology. In response to the detection of separated conditions, injection along the suction surface of each vane was used. Injected mass flow on the suction surface of stator vanes is known to reduce separation and the resulting limitation on static pressure rise due to lowered diffusion in the vane passage. A control algorithm was developed which provided a proportional response of the injected mass flow to the degree of separation, thereby minimizing the performance penalty on the compressor system

    Modern Experimental Techniques in Turbine Engine Testing

    Get PDF
    The paper describes application of two modern experimental techniques, thin-film thermocouples and pressure sensitive paint, to measurement in turbine engine components. A growing trend of using computational codes in turbomachinery design and development requires experimental techniques to refocus from overall performance testing to acquisition of detailed data on flow and heat transfer physics to validate these codes for design applications. The discussed experimental techniques satisfy this shift in focus. Both techniques are nonintrusive in practical terms. The thin-film thermocouple technique improves accuracy of surface temperature and heat transfer measurements. The pressure sensitive paint technique supplies areal surface pressure data rather than discrete point values only. The paper summarizes our experience with these techniques and suggests improvements to ease the application of these techniques for future turbomachinery research and code verifications

    Aerodynamic Performance of a Compact, High Work-Factor Centrifugal Compressor at the Stage and Subcomponent Level

    Get PDF
    The measured aerodynamic performance of a compact, high work-factor, single-stage centrifugal compressor, comprising an impeller, diffuser, 90-bend, and exit guide vane is reported. Performance levels are based on steady-state total-pressure and total-temperature rake and angularity-probe data acquired at key machine rating planes during recent testing at NASA Glenn Research Center. Aerodynamic performance at the stage level is reported for operation between 70 to 105% of design corrected speed, with subcomponent (impeller, diffuser, and exit-guide-vane) flow field measurements presented and discussed at the 100% design-speed condition. Individual component losses from measurements are compared with pre-test CFD predictions on a limited basis

    Aerodynamic Performance of a Compact, High Work-Factor Centrifugal Compressor at the Stage and Subcomponent Level

    Get PDF
    The measured aerodynamic performance of a compact, high work factor, single-stage centrifugal compressor, comprising an impeller, diffuser, 90-bend, and exit guide vane (EGV), is reported. Performance levels are based on steady-state total-pressure and total-temperature rake and angularity-probe data acquired at key machine rating planes during recent testing at NASA Glenn Research Center. Aerodynamic performance at the stage level are reported for operation between 70 to 105 of design corrected speed, with subcomponent (impeller, diffuser, and exitguide-vane) detailed flow field measurements presented and discussed at the 100 design-speed condition. Individual component losses from measurements are compared with pre-test predictions on a limited basis

    An Example of Economic Value in Rapid Prototyping

    No full text
    Today's modern machining projects are composed more and more of complicated and intricate structure due to a variety of reasons including the ability to computer model complex surfaces and forms. The cost of producing these forms can be extremely high not only in dollars but in time to complete. Changes are even more difficult to incorporate. The subject blade shown is an excellent example. Its complex form would have required hundreds of hours in fabrication for just a simple prototype. The procurement would have taken in the neighborhood of six weeks to complete. The actual fabrication would have been an equal amount of time to complete. An alternative to this process would have been a wood model. Although cheaper than a metal fabrication, it would be extremely time intensive and require in the neighborhood of a month to produce in-house

    Resilience strategies and the pharmaceutical supply chain: the role of agility in mitigating drug shortages

    No full text
    NoSupply chain resilience has been suggested to curb the impact of disruptions on supply chains. While this proposition seems coherent in theory, empirical evidence supporting this is limited, as existing literature has centred on exploring the impact of supply chain resilience on disruptions which are based on set time frames, non-supply chain specific as well as examining non-dynamic disruptive events. This study contends that resilience strategies are dynamic and as such their applications within supply chains differ. Therefore examining the impact of resilience will be appropriate on a dynamic disruption within a specific supply chain. In view of this, the paper examines through existing literature the applicability of agility within the pharmaceutical supply chain when dynamic disruptions like drug shortages occur. The study finds alertness, accessibility, connectivity and visibility as dimensions of supply chain agility that are capable of reducing the impact of drug shortages
    corecore