29 research outputs found
Experimental Observation of Plasma Wakefield Growth Driven by the Seeded Self-Modulation of a Proton Bunch
We measure the effects of transverse wakefields driven by a relativistic proton bunch in plasma with densities of 2.1 x 10(14) and 7.7 x 10(14) electrons/cm(3). We show that these wakefields periodically defocus the proton bunch itself, consistently with the development of the seeded self-modulation process. We show that the defocusing increases both along the bunch and along the plasma by using time resolved and time-integrated measurements of the proton bunch transverse distribution. We evaluate the transverse wakefield amplitudes and show that they exceed their seed value (< 15 MV/m) and reach over 300 MV/m. All these results confirm the development of the seeded self-modulation process, a necessary condition for external injection of low energy and acceleration of electrons to multi-GeV energy levels
Simulation and experimental study of proton bunch self-modulation in plasma with linear density gradients
We present numerical simulations and experimental results of the self-modulation of a long proton bunch in a plasma with linear density gradients along the beam path. Simulation results agree with the experimental results reported [F. Braunmller, T. Nechaeva et al. (AWAKE Collaboration), Phys. Rev. Lett. 125, 264801 (2020)PRLTAO0031-900710.1103/PhysRevLett.125.264801]: with negative gradients, the charge of the modulated bunch is lower than with positive gradients. In addition, the bunch modulation frequency varies with gradient. Simulation results show that dephasing of the wakefields with respect to the relativistic protons along the plasma is the main cause for the loss of charge. The study of the modulation frequency reveals details about the evolution of the self-modulation process along the plasma. In particular for negative gradients, the modulation frequency across time-resolved images of the bunch indicates the position along the plasma where protons leave the wakefields. Simulations and experimental results are in excellent agreement
Status of EU\u27s contribution to the ITER EC system
The electron cyclotron (EC) system of ITER for the initial configuration is designed to provide 20MW of RF power into the plasma during 3600s and a duty cycle of up to 25% for heating and (co and counter) non-inductive current drive, also used to control the MHD plasma instabilities. The EC system is being procured by 5 domestic agencies plus the ITER Organization (IO). F4E has the largest fraction of the EC procurements, which includes 8 high voltage power supplies (HVPS), 6 gyrotrons, the ex-vessel waveguides (includes isolation valves and diamond windows) for all launchers, 4 upper launchers and the main control system. F4E is working with IO to improve the overall design of the EC system by integrating consolidated technological advances, simplifying the interfaces, and doing global engineering analysis and assessments of EC heating and current drive physics and technology capabilities. Examples are the optimization of the HVPS and gyrotron requirements and performance relative to power modulation for MHD control, common qualification programs for diamond window procurements, assessment of the EC grounding system, and the optimization of the launcher steering angles for improved EC access. Here we provide an update on the status of Europeâs contribution to the ITER EC system, and a summary of the global activities underway by F4E in collaboration with IO for the optimization of the subsystems
Simulation and experimental study of proton bunch self-modulation in plasma with linear density gradients
We present numerical simulations and experimental results of the self-modulation of a long proton bunch in a plasma with linear density gradients along the beam path. Simulation results agree with the experimental results reported [F. Braunmller, T. Nechaeva et al. (AWAKE Collaboration), Phys. Rev. Lett. 125, 264801 (2020)]: with negative gradients, the charge of the modulated bunch is lower than with positive gradients. In addition, the bunch modulation frequency varies with gradient. Simulation results show that dephasing of the wakefields with respect to the relativistic protons along the plasma is the main cause for the loss of charge. The study of the modulation frequency reveals details about the evolution of the self-modulation process along the plasma. In particular for negative gradients, the modulation frequency across time-resolved images of the bunch indicates the position along the plasma where protons leave the wakefields. Simulations and experimental results are in excellent agreement
Transition between Instability and Seeded Self-Modulation of a Relativistic Particle Bunch in Plasma
We use a relativistic ionization front to provide various initial transverse wakefield amplitudes for the self-modulation of a long proton bunch in plasma. We show experimentally that, with sufticient initial amplitude [>= (4.1 +/- 0.4) MV/m], the phase of the modulation along the bunch is reproducible from event to event, with 3%-7% (of 2 pi) rms variations all along the bunch. The phase is not reproducible for lower initial amplitudes. We observe the transition between these two regimes. Phase reproducibility is essential for deterministic external injection of particles to be accelerated
Stability in Chinese and Malay heritage languages as a source of divergence
This article discusses Malay and Chinese heritage languages as spoken in the Netherlands. Heritage speakers are dominant in another language and use their heritage language less. Moreover, they have qualitatively and quantitatively different input from monolinguals. Heritage languages are often described in terms of change. This article focuses on three types of stability in heritage speakers: stability in form, based on two case studies on progressive and definite marking, stability in function, based on a study on classifiers in Mandarin and Cantonese Chinese, and stability in form and meaning based on a study on the non-completion of the grammaticalization process of punya. We relate (non)- change to the influence of the dominant language as well as to more general effects of bilingualism.</p