1,010 research outputs found

    Local structure of intercomponent energy transfer in homogeneous turbulent shear flow

    Get PDF
    Intercomponent energy transfer by pressure-strain-rate was investigated for homogeneous turbulent shear flow. The rapid and slow parts of turbulent pressure (decomposed according to the influence of the mean deformation rate) are found to be uncorrelated; this finding provides strong justification for current modeling procedure in which the pressure-strain-rate term is split into the corresponding parts. Issues pertinent to scales involved in the intercomponent energy transfer are addressed in comparison with those for the Reynolds-stress and vorticity fields. A physical picture of the energy transfer process is described from a detailed study of instantaneous events of high transfer regions. It was found that the most significant intercomponent energy transfer events are highly localized in space and are imbedded within a region of concentrated vorticity

    Pressure-strain-rate events in homogeneous turbulent shear flow

    Get PDF
    A detailed study of the intercomponent energy transfer processes by the pressure-strain-rate in homogeneous turbulent shear flow is presented. Probability density functions (pdf's) and contour plots of the rapid and slow pressure-strain-rate show that the energy transfer processes are extremely peaky, with high-magnitude events dominating low-magnitude fluctuations, as reflected by very high flatness factors of the pressure-strain-rate. A concept of the energy transfer class was applied to investigate details of the direction as well as magnitude of the energy transfer processes. In incompressible flow, six disjoint energy transfer classes exist. Examination of contours in instantaneous fields, pdf's and weighted pdf's of the pressure-strain-rate indicates that in the low magnitude regions all six classes play an important role, but in the high magnitude regions four classes of transfer processes, dominate. The contribution to the average slow pressure-strain-rate from the high magnitude fluctuations is only 50 percent or less. The relative significance of high and low magnitude transfer events is discussed

    Kinematics and dynamics of vortex rings in a tube

    Get PDF
    Kinematic theory and flow visualization experiments were combined to examine the dynamic processes which control the evolution of vortex rings from very low to very high Reynolds numbers, and to assess the effects of the wall as a vortex ring travels up a tube. The kinematic relationships among the size, shape, speed, and strength of vortex rings in a tube were computed from the theory. Relatively simple flow visualization measurements were used to calculate the total circulation of a vortex rings at a given time. Using this method, the strength was computated and plotted as a function of time for experimentally produced vortex rings. Reynolds number relationships are established and quantitative differences among the three Reynolds number groups are discussed

    A preliminary three-dimensional global model study of atmospheric methyl chloride distributions

    Get PDF
    A global three-dimensional atmospheric model of methyl chloride (CH3Cl) is presented. When incorporating known terrestrial and oceanic source terms, the tropospheric budget of CH3Cl is unbalanced. We show that a reduction in the atmospheric CH3Cl loss rate could account for the net budget discrepancy but fails to reproduce the observed latitudinal distribution. We rind that observed mixing ratios and latitudinal distributions can be reproduced by addition of a tropical terrestrial CH3Cl source of 2330-2430 Gg yr(-1) combined with a 50% reduction in the southeastern Asian biomass burning contribution. This is equivalent to a net source of 3800-3900 Gg yr(-1), slightly higher than previously estimated. The magnitude of additional emissions required to match observations is sensitive to their latitudinal distribution. We successfully simulate tropical land-bascd observations best when the added source is increased at the coasts relative to inland areas. Mixing ratios at remote sites are relatively insensitive to the finer details of the source parameterization

    HIAPER: The next generation NSF/NCAR research aircraft

    Get PDF

    Acetonitrile in the atmosphere

    Get PDF

    Ozone Response to Aircraft Emissions: Sensitivity Studies with Two-dimensional Models

    Get PDF
    Our first intercomparison/assessment of the effects of a proposed high-speed civil transport (HSCT) fleet on the stratosphere is presented. These model calculations should be considered more as sensitivity studies, primarily designed to serve the following purposes: (1) to allow for intercomparison of model predictions; (2) to focus on the range of fleet operations and engine specifications giving minimal environmental impact; and (3) to provide the basis for future assessment studies. The basic scenarios were chosen to be as realistic as possible, using the information available on anticipated developments in technology. They are not to be interpreted as a commitment or goal for environmental acceptability

    Localness of energy cascade in hydrodynamic turbulence, II. Sharp spectral filter

    Full text link
    We investigate the scale-locality of subgrid-scale (SGS) energy flux and inter-band energy transfers defined by the sharp spectral filter. We show by rigorous bounds, physical arguments and numerical simulations that the spectral SGS flux is dominated by local triadic interactions in an extended turbulent inertial-range. Inter-band energy transfers are also shown to be dominated by local triads if the spectral bands have constant width on a logarithmic scale. We disprove in particular an alternative picture of ``local transfer by nonlocal triads,'' with the advecting wavenumber mode at the energy peak. Although such triads have the largest transfer rates of all {\it individual} wavenumber triads, we show rigorously that, due to their restricted number, they make an asymptotically negligible contribution to energy flux and log-banded energy transfers at high wavenumbers in the inertial-range. We show that it is only the aggregate effect of a geometrically increasing number of local wavenumber triads which can sustain an energy cascade to small scales. Furthermore, non-local triads are argued to contribute even less to the space-average energy flux than is implied by our rigorous bounds, because of additional cancellations from scale-decorrelation effects. We can thus recover the -4/3 scaling of nonlocal contributions to spectral energy flux predicted by Kraichnan's ALHDIA and TFM closures. We support our results with numerical data from a 5123512^3 pseudospectral simulation of isotropic turbulence with phase-shift dealiasing. We conclude that the sharp spectral filter has a firm theoretical basis for use in large-eddy simulation (LES) modeling of turbulent flows.Comment: 42 pages, 9 figure
    corecore