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(The natural) laws are not forces external to things, 

but represent_the harmony of movement immanent in them. 

-from the I Ching. 

ii 



)\bstract 

Although vortex rings have been studied mathematically and 

experimentally for over a century, the transition in characteristics 

from viscous to turbulent vortex rings, and the effects of boundaries 

on their evolution is not well understood. In this study kinematic 

theory and flow visualization experiments are combined to examine the 

dynamic processes which control the evolution of vortex rings from 

very low to very high Reynolds numbers, and to assess the effects of 

the wall as a vortex ring travels up a tube. 

THEORY. We model the vortex ring as a circular vortex filament 

axisymmetrically placed ~n an infin~tely long tube. Using the 

B~ot-Savart law, a k~nemat~c expression wh~ch l~nearly relates a given 

distr~but~on of vort~city to ~ts veloc~ty field, the closed form 

solutions to the non-steady potential and streamline fields are 

obta~ned. Transferring to a frame mov~ng with the ring, the outermost 

closed streamline outl~nes the sphero~dal volume of fluid carried 

along w~th the vortex core. We find that the effect of the tube on 

the vortex r~ng is to increase its volume and decrease its speed as 

compared with an ~dent~cal ring in an unbounded flow. By 

superpos~t~on of vortex f~laments, we conclude that the size and shape 

of typ~cal vortex rings are accurately predicted by concentrating 

their strength along a circle, and by neglecting vorticity in a wake. 

EXPERIMENT. Vortex r~ngs are produced by eject~ng a single 

pulse of water through or~fices mounted in a plexiglass tube of 

d~ameter 11.88 cm. Seven orifices with or~fice-to-tube diameters 

between 0.10 and 0.64 are used. The piston speed is adjusted so as to 

produce tube Reynolds numbers of roughly 5000, 4000, and 3000, 

resulting in the production of vortex r~ngs w~th Reynolds numbers 

between 690 and 50 1 00. To visualize the flow, dye and hydrogen 
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bubbles are used, high speed 16mm mOV1es record1ng all comb1nat1ons of 

tube Reynolds number and or1f1ce size. From the mOV1es detailed 

measurements are made of the d1stance, size, and shape as a funct10n 

of t1me for 26 rings at d1fferent Reynolds numbers. A careful 

examinat10n of the data reveals: 

1. The t1me dependent form of the r1ng veloc1ty can be 1dentif1ed 

w1th1n reg1mes for all vortex r1ngs, two regimes being separated 

by a rapid change 1n velocity. 

2. From the form of t1me dependence in velocity, three classes of 

vortex r1ngs can be 1dentif1ed and grouped by Reynolds number. 

Qualitat1ve observations are combined with the measurements to study 

the character of vortex r1ngs 1n each of these three groups and the 

per10ds of rap1d change between regimes. 

COMBINATION OF THEORY WITH EXPERIMENT. The k1nematic 

relat10nships among the size, shape, speed, and strength of vortex 

rings 1n a tube are computed from the theory. Prev10us methods for 

computat1on of the total c1rculation requ1red a measurement of the 

veloc1ty field within the vortex ring. Together with these k1nematic 

relationsh1ps, however, relatively simple flow v1sualizat1on 

measurements can be used to calculate the total clrculation of a 

vortex ring at a given time. Using thlS method we have computed and 

plotted the strength as a function of tlme for our exper1mentally 

produced vortex rlngs. Reynolds number relatl0nshlps are establlshed 

and quant1tative differences among the three Reynolds number groups 

are discussed. The accuracy of the method, assessed by comparing w1th 

the measurements of Sullivan et al., 1S felt to be excellent. 
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1-1 HISTORICAL OUTLINE 

1 
l11troductio11 

Vortex r~ngs have fascinated people for over a century. After 

Helmholtz published h~s celebrated paper in 1867 describ~ng the basic 

laws of the flow of fr~ct~onless, lncompress~ble fluids, a great deal 

of excitement and act~vity developed around the observat~on that a 

th~n core vortex r~ng ~n such a fluid would never change in character. 

The permanence of the "Helmholtz ring" led Kelv~n [64, art~cle 1] to 

propose the vortex r~ng as a model for the atom. D~fferences among 

elements would be accounted for by d~fferent degrees of "knottedness" 

of the vortex core, and the radiation of heat and l~ght by core 

v~brations. Extens~ve mathematical analyses of "class~cal" vortex 

rings continued through the turn of the century [10, 21-24, 62-64]. 

Serious exper~mental study of vortex r~ngs in a real fluid began 

w~th the ~mpresslve flow visualization work of Krutzsch ~n 1939. 

Further stud~es of vortex r~ngs were precluded by the onset of World 

War II, until G.I. Taylor reklndled lnterest with a letter to the 

editor of the Journal Qf Aoplled PhYS1CS ln 1953. Soon thereafter 

J.S. Turner published his excellent paper on buoyant vortex rings with 

the suggestion that such rings might prove useful ~n seed~ng clouds to 

~nduce the productlon of rain. Several other papers appeared in the 

fifties and slxties concerning buoyant vortex r~ngs [13, 41, 69, 70], 

1 



Sect10n 1_1 Introduct10n 2 

along with the suggestloo that even 1f vortex r10gs would oot prove 

useful 1n seeding clouds, perhaps they could be used to transport 

10dustrial wastes hlgn 1nto the atmosphere. Fortunately for all of us 

th1S scheme never bore fru1t. 

Interest 1n vortex rings exploded 1n the sevent1es. What was 

before a tr1ckle of papers soon became a steady stream and 1S now 

show1ng slgns of becom1ng a flood. Deta11ed exper1mental stud1es of 

neutrally buoyant vortex rings resumed once aga1n w1th publ1cat1ons by 

Maxworthy in the West, and Osh1ma 1n the East. Mathematic1ans such as 

Norbury, Fraenkel, and Saffman extended the theory of vortex r1ngs to 

include larger cores and viscous effects. Extens1ve mathemat1cal 

treatments of vortex r1ng stab111ty have come from W1dnall and her 

group at M.I.T. 

The rapld 1ncrease 1n 1nterest 10 vortex r1ngs is perhaps a 

result of the1r increas10g appl1cation to a wide range of phys1cal 

problems. Vort1ces are commonly found 1n nature at all scales, from 

the flowf1eld produced by 1nsects, to l~rge atmospher1c low pressure 

systems cover1ng thousands of square k110meters. Vortex r1ngs prov1de 

an 1deal exper1mental and mathematlcal model for studY1ng general 

aspects of vortex evolut10n. The rollup of shear layers into 

vort1ces, the d1ffusion of vorticity from reg10ns where vorticlty 1S 

concentrated, the convect10n of vort1c1ty and vortex f1laments, the 

1nstabI1Ity and breakdown of vort1ces and vortex 11nes, the 

development of turbulence from such breakdowns, vortex stretch1ng, 

all of these tOP1CS relate to the study of vortex rings. 

Vortex rings themselves have more d1rect applIcatIons to many 

problems of practIcal and academ1c 1nterest. Current stud1es of the 

larger scale structures in turbulent flows have led to 1nterest In 

the vortex r1ng as a possible model for the large eddles observed 

especlally 1n turbulent shear flows [9, 53]. In the development of 

turbulent Jets, for example, vortex r1ngs can be observed to form at 



Introduction 3 

the lip of the Jet and to go through compllcated pairing processes to 

form larger, less coherent rlngs farther downstream.* These vortex 

rlngs are found to play an lmportant role as well in the structure of 

the sound fleld around turbulent Jets [39]. Atmospherlc thermals can 

be visualized as large, buoyant vortex rings [41, 59]. Birds such as 

hawks and eagles soar around the center of these large vortlces, 

uSlng the vertical winds and upward movement of the buoyant air to 

gain altltude with 11ttle expenditure of the1r own energy [8]. 

Propulsive fl1ght of 1nsects and birds also involves the product10n of 

vortex rings. In two recent articles [52], Rayner has modeled the 

wake of blrds and 1nsects as chalns of vortex rings which carry away 

the react10n momentum to the lift and thrust produced by the mot10n of 

the w1ngs. Plasma phYS1C1StS have been 1nterested 1n the evolution of 

vortex r1ngs as they travel through flu1ds such as as liquid helium II 

[11, 12, 18,72,73], pr1nclpally to study the quant1zed nature of the 

total clrculatlon. Vortex r1ngs were even used by by BJerknes in 1926 

to model the occurance of sunspots! 

In1tially, our interest 1n vortex rings developed from the study 

of the trans1ent flowfield beh1nd arterial stenoses, or blockages 1n 

the human arter1al system, caused by the buildup of cholesterol on the 

arterial wall or from d1seased heart valves Wh1Ch will not open 

completely. The pulsatlle nature of the blood as it 1S ejected 

through these constr1ctions results in the production of rather 

1ncoherent, turbulent vortex rings Wh1Ch travel up the artery and 

eventually collide with the arterial wall. This has led, therefore, 

to our interest 1n the effect of boundar1es such as a tube on vortex 

ring evolution. 

*E. Bouchard and w.e. Reynolds in the Department of Mechanical 
Engineering here at Stanford have produced beautiful movies of 
this process. 



Sect10n 1-2 Introduct10n 4 

1-2 OBJECTIVES AND ORGANIZATION 

In the past, exper1mental stud1es have concentrated on vortex 

r1ngs in unbounded flows, and over a l1m1ted range of Reynolds 

numbers. Our emphas1s 1n this study is two-fold: 

We would l1ke to exam1ne the dynamic processes and differences 

1n characterist1cs from very low Reynolds number V1SCOUS vortex r1ngs 

to very h1gh Reynolds number turbulent vortex r1ngs, and we would l1ke 

to assess the effects of the wall as vortex r1ngs travel up a tube. 

The dynam1c processes in which we are 1nterested 1nvolve the 

loss of vort1c1ty from vortex r1ngs as they propagate. We would l1ke 

to predict the change 1n strength, or total c1rculat10n as a funct10n 

of time for vortex r1ngs at d1fferent Reynolds numbers. To accomp11sh 

th1s dynamic calculation we develop a method based on a purely 

k1nemat1c theory which allows us to relate the strength of a vortex 

ring to quant1t1es wh1ch can be measured from flow visua11zat10n 

experiments. 

In the next chapter the background to th1s work is estab11shed, 

and in Sect10n 2-5 the concepts beh1nd our method for calculat1ng the 

strength of a vortex r1ng 1S d1scussed. In order to better understand 

the theoret1cal and exper1mental analyses which follow 1n succeed1ng 

chapters, 1t 1S suggested that Sect10n 2-5 not be sk1pped. 

In Chapter 3 we develop the k1nematic theory for a vortex r1ng 

in a tube. We find the potential and streamline f1elds for vortex 

rings of different s1ze, and learn what the effect of the tube 1S on 

the shape and speed of a vortex r1ng as compared w1th the same r1ng 1n 

an unbounded flow. 

Flow visua11zat10n experiments in which vortex r1ngs were 

produced and observed as they travel up a tube are d1scussed 1n 

Chapter 4. Qua11tat1ve observations and quantitative measurements of 

vortex ring veloc1ty, s1ze, and shape are comb1ned to study 
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differences in vortex rIngs as they relate to Reynolds number. 

In Chapter 5 the flow vIsualIzatIon measurements are combined 

with the kinematic theory to calculate the total circulatIon as a 

functIon of time for our experimentally produced vortex rings. 

Relationships wIth Reynolds number are establIshed, and quantItative 

dIfferences discussed, agaIn with emphasis on changes relating 

prImarily to the Reynolds number of the vortex ring. 
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2-1 KINEMATICS OF VORTICITY 

2 
Backgrou11d 

Vort1c1ty 1S a measure of the angular velocity, or spin of fluid 

part1cles. In a flu1d of constant dens1ty, as we consider here, spin 

is imparted by frictional forces 1n the flu1d, for example along a 

boundary or surface within the flow. Although vortic1ty is a dynamic 

quantity a great deal can be learned by consider1ng the kinematic 

relat10nsh1ps between the vorticity field and the velocity field, that 

is, by cons1der1ng only the conservation of mass and the definition 

for vort1c1ty. 

BIOT-SAVART LAW. Consider an incompress1ble and, for the 

moment, an unbounded flow at rest at inf1n1ty. At the time t the 
-+ -+-+ 

veloc1ty at the point x 1S given by u(x) and the vorticity at the 
-+ -+-+ 

point ~ by w(s). Thus we have 

Conservation of Mass: 

Defin1t10n of Vort1city: 

-+ 
div u = 0 

-+ -+ 
curl u = w 

(2-1 ) 

(2-2 ) 

-+ -+ 
We can satisfy Eq. (2-1) identically by letting ti = curl B. B is 

-+ 
chosen such that div B = 0, so that application of Eq. (2-2) results 

in the Poisson equat10n: 

-+ 
-w 

6 
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with the solution: 
00 -+-+ 

= __ 1 __ fff w(~) d~3 
4 'IT -00 r (2-3) 

-+ -+ -+ 1-+1 As shown in F1g. 2-1, r = x - ~ and r = r. Taking the curl of Eq. 

(2-3) results 1n the well known law of B10t and Savart: 

-+-+ 
u(x) 

1 
4'IT 

00 -+ ++ 
JJf r Xr~(~) d~3 
_00 

-+ 

(2-4) 

At any t1me t the velocity at the point x is given by an 1ntegral of 

the vortic1ty field over the whole flowf1eld. Two 1mportant features 

of Eq. (2-4) should be g1ven spec1al note: 

1. Th1s 1S a kinemat1c expreSS10nj only conservation of mass has been 

used 1n its der1vation. Thus, even for a t1me-dependent flow, 

laminar or turbulent, where vort1c1ty is d1ffused and convected, 

if at any time the vort1c1ty field is known or can be well 

approximated, the veloc1ty f1eld can in principle be computed from 

Eq. (2-4). 

2. The veloclty f1eld 1S related linearly to the vort1city f1eld. 

The vortic1ty field can therefore be d1v1ded 1nto elements, the 

veloc1ty f1eld found for each element separately, and summed to 

find the total velocity at any point 1n space and t1me. 

BOUNDARIES. Although Eq. (2-4) was derived for an unbounded 

flow, 1t can be extended to a flow w1th boundar1es by add1ng a 
-+ -+ 

potent1al velocity (i.e., 1rrotational and divergenceless) u (x) to 
1 

Eq. (2-4), chosen to satisfy the boundary cond1tions. 

VORTEX FILAMENTS. In vortical flows it 1S common to find 

vort1city concentrated along curved lines, so that 1t 1S natural to 

1deal1ze the concentrated reg10n of vortical flow as a vortex tube, or 

1n the limit of zero tube rad1us, a vortex f1lament. The vorticity 
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FIGURE 2-1 

Definitions for a vortical flowfield 

FIGURE 2-2 

Definitions for a vortex tube or filament 
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content of a vortex tube (or a flu~d element) is characterized by the 

circulation, or strength r where 

-+ -+ r = !J u • d1', 
-+ -+ 

== II w • dA (2-5) 
C A 

C is a closed material curve around the vortex tube (or fluid element) 

and A ~s the cross-sect~onal area, as shown ~n Fig. 2-2. 

Mathemat~cally a vortex tube ~s often ideal~zed as a f~lament, or line 

where the strength ~s g~ven in the l~mit A -+ O. The accuracy of such 

an idealization depends on the degree to which vort~city ~s 

concentrated, and the reg~on of the flow in wh~ch we are ~nterested. 

It ~s often the case that "far" from the reg~on of concentrated 

vort~c~ty the velocity f~eld ~s accurately descr~bed by vortex 

filaments, whereas the flow "near" the vort~cal reg~on must take ~nto 

account the deta~ls of the vort~c~ty d~str~but~on. 
-+ 

Us~ng the d~vergence theorem and the divergenceless nature of w 

~t ~s easy to show that the c~rculat~on r must be constant along a 

vortex tube. Th~s k~nemat~c result has the consequence that a vortex 

tube cannot end ~n the flu~d. The f~laments must e~ther form loops 

(e.g., vortex rings) or extend to the boundary (e.g., the horseshoe 

vortex observed ~n turbulent boundary layers). 

For a vortex filament of strength r the Biot-Savart Law, Eq. 

(2-4), reduces to the more fam~l~ar form: 

-+ -+ r 
u(x)= - 4n 

-+ -+ 
r x d1',Z; 

rJ r 3 

filament 
-+ -+ 

where 1', Z; ~s along the filament ~n the dHection of w. 

(2-6 ) 

IMPULSE. One add~t~onal kinemat~c express~on of ~nterest ~s 

that for the flu~d ~mpulse, the total ~mpuls~ve force wh~ch would be 

requ~red to set the vortical flowf~eld into motion. The total ~mpulse 
-+ 
P, der~ved by Batchelor [2, p. 518] and Lamb [29, p. 214] has the 
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units of momentum and is g1ven by: 

-+ 
p = ~ -+ -+-+ 3 fff Z;; x w(Z;;)dZ;; 

where P 1S the mass density of the flu1d. m 

2-2 DYNAMICS OF VORTICITY 

Background 10 

(2-7) 

Like momentum, vorticity can diffuse down a gradient slope 

through the act10n of v1scosity, or 1n the case of turbulent flows, 

through the action of small scale turbulent mot1ons. The dynam1cs of 

V1SCOUS diffus10n in an 1ncompress1ble fluid 1S described by the 

vort1c1ty equat10n: 

-+ 
3w -+ -+ -+ -+ 2 -+ - + u • 'il w = w • 'il u + \) 'il w 
3t 

(2-8) 

The left hand s1de is, of course, the total derivative accounting for 

vortic1ty changes 1n flu1d elements as they are convected w1th the 

flow. The term 1nvolv1ng \), the k1nematic v1scosity, describes 
-+ -+ -+ 

V1SCOUS d1ffus10n of vorticity, and w·'ilu gives the change 1n w due to 

vortex stretching. If a flow 1S of suff1ciently h1gh Reynolds number 

to disregard V1SCOUS d1ffus10n over the time per10d of interest, yet 

low enough to d1sregard turbulent diffus10n, the vortical content of a 

flu1d element convected w1th the flow would only change via vortex 

stretch1ng. 

KELVIN/HELMHOLTZ THEOREM. ApplY1ng the total der1vative to the 

def1nltion of r 1n Eq. (2-5) and 1nsertlng the 1ncompress1ble 
Dti 

momentum equatlon for Dt one arr1ves at the followlng expresslon for 

the c1rculatlon of a fluld element as it is convected with the flow: 

Dr 
Dt 

-\) ~ curl ~ • d1 = \) II 'il2~ • dA 
C A 

(2-9) 
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where C and A are defined as in Eq. (2-5). The circulat10n can change 

only by the d1ffusion of vort1city from the element. If we aga1n have 

a flow 1n wh1ch we can neglect the effects of fr1ct10n we arrive at 

the Kelvin/Helmholtz theorem: 

Dr 
Dt 

o (inviscid) (2-10) 

wh1ch states that the c1rculat10n of every flu1d element rema1ns 

constant 1n time. Th1S has the 1mportant consequences that vortex 

tubes are convected w1th flow at the local flu1d veloc1ty, and that a 

vortex tube is always composed of the same flu1d part1cles. The 

previous considerat10ns of the vort1c1ty equat10n show that as a 

vortex tube is stretched by the local veloc1ty f1eld the magnitude of 

the vort1c1ty w1th1n the tube 1ncreases. S1nce r must rema1n 

constant, the area of the tube must therefore decrease. 

In such flows where d1ffus10n of vort1c1ty can be neglected, the 

B10t-Savart law can be used to descr1be both the dynamic as well as 

the k1nematic behav10r of the flow. The veloc1ty f1eld is "1nduced" 

by the vorticity f1eld. Since each vortex element moves with the 

local fluid velocity, the self-1nduced velocity f1eld found from Eq. 

(2-6) can be 1n 1ntegrated 1n t1me to f1nd the subsequent location of 

the vortex elements. Aga1n uS1ng Eq. (2-6) the veloc1ty f1eld at that 

later time can then be calculated and the process repeated. 

In general, of course, diffusion of vort1city due to v1scosity 

or turbulent motions is always present, but in many flows contain1ng 

concentrated regions of vort1city, the rate of d1ffusion 1S slow as 

compared w1th the convect10n of vort1c1ty, and 1mportant features of 

the flow can be understood from the 1nv1sc1d cons1derat10ns above. An 

example is the instab11ity and rollup of a shear layer lead1ng to the 

formation of 11near vort1ces, wh1ch then proceed to pa1r [78]. 

INVARIANCE OF IMPULSE. ApplY1ng the total derivative to Eq. 

(2-7) and using the vorticity equation, one can eventually arrive at 
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an expression for the var1ance 1n the total fluid 1mpulse 1n a bounded 

flow. If the vortic1ty and its normal derivat1ve are zero along the 

boundary the result is: 
-+ 

dP 
dt = ~ 

-+ 

P ¢:it u 2 dS 
m 

S 

(2-11a) 

where S is the boundary surface. For an unbounded flow (S -+ 00) at 

rest at infinity we see that 

-+ 
dP 
dt o (unbounded) (2-11b) 

Thus the total flu1d 1mpulse of an unbounded fluid is invariant for 

both V1SCOUS and 1nvisc1d flows. 

2-3 VORTEX RINGS IN AN IDEAL FLUID 

2-3.1 The Classical Vortex Ring 

A vortex r1ng can be defined as a vortical region of fluid where 

the mean vorticity field has an azimuthal sense and is concentrated 

(peaks) along a c1rcle.* It 1S natural, therefore, to model the 

vortex ring as a c1rcular vortex tube, where vort1city is conf1ned to 

a torus of small cross-section. Helmholtz [20] proposed such a model 

for a vortex r1ng in an ideal (incompress1ble, 1nvisc1d), unbounded 

flu1d about 100 years ago, and its propert1es were extensively studied 

around the turn of the century [10, 21_23, 62-64]. 

NON-STEADY COORDINATE SYSTEM. Consider an axisymmetric flow 

without swirl. We define a cylindrical coordinate system (p, 6, z) 

*We are concerned here with circular vortex rings, although more 
general shapes such as elliptical vortex rings can be found in nature 
and have been studied as well (1, 14, 26). 
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flxed ln space* such that at the tlme t a torus of vorticity of radlus 

R is located in the z = 0 plane axisymmetrically placed about the 

z-axis (see Fig. 2-3). The torus, called the vortex core, has a 

clrcular cross sectlon with radlus ~ and a total clrculation, or 

strength r. Outside the core the flow lS taken to be lrrotational. 

Due to its self-lnduced veloclty fleld the vortex rlng lS moving wlth 

speed U in the +z dlrection, so we are deplcting the vortex rlng ln a 

non-steady frame of reference. 

CIRCULAR VORTEX FILAMENTS. The classlcal vortex rlng is a thln 

torus of vortlcity embedded ln a potentlal flow, as sho~~ in Flg. 2-3. 

By "thln" we mean ln the llmit aiR -+ O. In this llmit the flowfleld 

outslde of the core is that for a clrcular vortex filament of strength 

r (the flowfield wlthln the core, of course, depends on the 

distributlon of vorticity). In this region the flow is lrrotatl0nal, 

so we can define a veloclty potentlal, ~: 

ti = V ~ (2-12) 

ApplYlng Stokes Theorem to the Biot-Savart law, EQ. (2-6), one can 

obtain the following representalon for the potential field due to a 

closed vortex fllament: 

~(;D = (2-l3) 

As indlcated ln Flg. 2-4, A lS the surface bounded by the vortex 
-+ fllament-loop, ~ 1S a pos1t10n vector to a point on that surface, n 1S 

the outward normal to the surface (defined by the d1rect10n of r), and 
-+ -+ -+ 
r = x - ~ . Eq. (2-13) shows that mathematically a vortex 

*By "fixed in space" we mean fixed with respect to the stagnant flow 
at infinity or, in the case of the vortex ring in a tube, fixed with 
respect to the boundaries. 
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FIGURE 2-3 

The cylindrical coordinate system 
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FIGURE 2-4 

A vortex filament-loop 
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filament-loop of strength r can be replaced by a uniform d~stribution 

of dipoles of strength r over the surface bounded by the loop. Th~s 

result applies to any arb~trar~ly shaped vortex filament-loop. In 

particular, a circular vortex f~lament can be replaced by a disk of 

d~poles of un~form strength; the potential at any po~nt ~s Just the 

~ntegral of these d~poles over the d~sk. Th~s suggests, as we show 

expl~c~tly in Sect~on 3-1.1, that a vortex r~ng in the non-steady 

frame of reference produces an outer flowf~eld w~th a basically dipole 

character. From Eq. (2-7) the flu~d ~mpu1se for a circular vortex 

f~lament of strength r and rad~us R is found to be 

-+ where P = pz. 

(2- 1 4) 

VELOCITY. As d~scussed in the prev~ous sect~on, in an ~dea1 

f1u~d a c~rcular vortex tube w~ll move due to ~ts self-~nduced 

velocity field. Kelv~n [64] and Lamb (29], us~ng the Biot-Savart law, 

found the velocity of the class~cal vortex ring w~th a constant 

vorticity distribut~on ~n the core (i.e., the core rotates as a sol~d 

body) to be: 

r [8R a ] U = - Q,n - - 1t; + 0(-) 
4nR a R 

(2-15) 

Th~s formula has been extended by Saffman [54], Fraenkel [15], and 

W~dnall [14] to an arb~trary distr~but~on of vort~c~ty in the core: 

r 
u = 4nR (2-16) 

where A is a constant wh~ch depends on the vort~city d~stribut~on. 

Saffman presents A ~n the following form: 

A = 
a s 
f (2n f r 
o 0 

s'wo (s')ds,)2 ds 
s 

s ~s a radial coordinate from the core's center and woes) is the f~rst 
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order vorticity distribut10n. For a uniform d1stribution A 1S 1/4. 

For the cont1nuous d1str1but10n woes) = (s2_a2)2 which has been used 

by W1dnall in her studies of the stability of vortex rings, and 1S 

more real1stic with respect to real vortex rings l36], A = 5/6 so 

that: 

u ~ 
r 

4nR 
( in 8R _ l ) 

a 3 
(2-17) 

Note the presence of a logarithmic s1ngular1ty as aiR + O. A result 

of locally induced velocities which in the limit of a vortex filament 

become 1nfin1te, a logar1thm1c singularity in veloc1ty 1S a general 

feature of a curved vortex filament. 

In an ideal flu1d r is constant, and S1nce vort1city cannot 

d1ffuse from the core, A cannot change. For an unbounded flow the 

1mpulse 1S 1nvar1ant as well, so from Eq. (2- 1 4) the radius of the 

vortex r1ng must rema1n constant. Thus, a thin core vortex r1ng in an 

unbounded, 1ncompressible, completely fr1ctionless flow would travel 

to inf1n1ty w1th all properties invar1ant. 

MOVING FRAME OF REFERENCE. In a coordinate system f1xed in 

space, the 1nstantaneous streamline field resembles that of a point 

dipole. If we allow the coord1nate system as def1ned 1n F1g. 2-3 to 

move with the vortex r1ng,* however, three regions are def1ned: 

1. The tor01dal core region in which the rotational flu1d is 

conf1ned. 

2. A spheroidal reg10n surrounding the core defined by an outermost 

closed streamline with a front and rear stagnation point. 

3. The outermost region w1th streaml1nes which extend to 1nfinity. 

A classical vortex r1ng 1n steady and non-steady coordinates is 

*Such a frame of reference need not in general be steady (i.e., moving 
with constant speed), but for a vortex ring in an ideal fluid it is. 
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moving with the vortex 
ring (steady) 

FIGURE 2-5 
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fixed in snace 
(non-steady) 

The classical vortex ring in steady and 
non-steady coordinates. 
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compared 1n F1g. 2-5. The f1u1d w1th1n the sphero1da1 region 1S 

conf1.ned to tnis rE'g1.on and 1.S transported along w1.th the core. When 

uS1.ng the term, "vortex r1ng," we refer to the whole spher01dal region 

of fluid, including the region 1n Wh1Ch the vortic1ty is 

concentrated-- the vortex core. 

2-3.2 Thick Core Vortex Rings 

The class1cal vortex ring is a torus of vortic1ty in the lim1t 

of vanishing core thickness. We consider now vortex rings w1th thick 

cores. For such rings the cross-sectional area of the core is not 

circular and the d1str1bution of vortic1ty within the core must be 

cons1dered. 

For an ideal flu1d the vorticity equat10n, Eq. (2-8), can be 

wr1tten for axisymmetr1c flow w1thout sW1rl as 

-+- " where w = w e 
w 

neglected 'p 

where 'l! 1S the 

D (!E) =0 
Dt P 

(2-18) 

That is, for a flow where viscous d1ffusion can be 

must be constant along a flu1.d streamline. Thus 

w f('l!) (2-19) 
P 

stream function in cylindr1.cal coordinates: 

1 a'l! 1 a'l! (2-20) 
u az u ap P P z P 

The stream function 1S defined so as to satisfy cont1nuity; applying 

the def1.n1t10n for vorticity, then, results in a k1nematic equation 

wh1.ch can be solved for a g1ven vort1city d1str1bution to find If'. 

When comb1ned w1th the dynamical result in (2- 1 9) the stream function 

for a th1ck core vortex ring must sat1sfy: 

(2-21) 

o elsewhere 
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Several mathematic~ans have sought solut~ons to (2-21) for the 

case where f(~) is a constant. At the extreme of th~ck core vortex 

r~ngs ~s the solution found by Hill [24] for a spherical vortex 1n 

wh~ch vort~city occup~es a sphere such that f(~) = C, or equ~valently, 

w = C p. An exact solut~on to Eq. (2-21) can be found for th~s case. 

The stream function and veloc~ty for H~ll's spher~cal vortex are g~ven 

by: 

u 

3 r [1 _ ( X
R

, ) 2 ] 
2" STIR' 

r 
2 STIR' r 

(2-22) 

where R' ~s the sphere radius and x 2 = p2+ Z2. We note that even ~n 

the extreme case of a spherical vortex the same bas~c relations among 

the velocity, strength, and radius pers~st. That is, for both th~n 

and th~ck core vortex rings the r~ng speed ~s d~rectly proportional to 

the total c~rculat~on and ~nversely proportional to the rad~us. 

Norbury [42] has numer~cally computed solut~ons to Eq. (2-21) for f(~) 

constant, and has shown that the class~cal vortex r~ng and H~ll's 

spher~cal vortex are two extremes of a fam~ly of vortex rings based on 

the s~ngle parametera~aeff/R where aeff ~s the rad~us of the core as 

~f ~ t were circular w~ th the same area. a. = 12 represents H~ll' s 

sphericnl vortex and a. -r 0 ~s the class~cal vortex r~ng of Kelv~n and 

Lamb. The computed solut~ons ~nd~cate that for a. ~ 0.2 the 

streaml~nes with~n the core and the core cross-sect~on are very nearly 

circular. 

2-4 VORTEX RINGS IN A REAL FLUID 

2-4.1 Vortex R~ng Formation 

Vortex rings are typ~cally formed by ejecting a flu~d through an 

or~fice or from a tube. As the flu~d is eJected, a cyl~ndrical sheet 
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of vortlclty emerges, and due to ltS self-induced veloclty fleld 

(Section 2-2) beglns to spiral, concentrating vorticlty in a toroldal 

regl0n.* As the rollup of the cyllndrlcal vortex sheet continues, the 

vortlclty ln this regl0n lncreases, until the vortex rlng breaks from 

the orlflce and beglns movlng lnto the amblent fluid with lmpulse and 

strength determlned by the magnltude and amount of vortlcity 

entrained. 

When the eJected fluid lS dyed the process of formation and the 

extent of the vortex rlng can be vlsualized. A well-formed vortex 

rlng lS generally observed to consist of a darkly dyed torus 

surrounded by a more lightly dyed spherold of fluid. The more darkly 

dyed region marks the core of the vortex rlng. Measurements by 

Sulllvan ~~ [60J and Maxworthy [36J show that even for relatlvely 

"thick" vortex rings the vorticlty dlstributl0n lS hlghly peaked ln 

the core with smaller amounts of vortlclty resldlng ln the outer 

region. In Flg. 2-6 are sketched the velocity and vortlclty 

dlstr1butl0ns measured by Sullivan ~ ..a.l..... for a "thin" core and 

"thlCk" core vortex rlng (aiR = 0.075 and 0.27 respect1vely). The 

core d1ameter, 2a, 1S deflned as the d1stance between the maX1mum and 

mlnlmum ln veloc1ty. 

2-4.2 Vortex Ring Evolutl0n 

The character1stlcs of vortex rlngs as they evolve are dependent 

to some extent on the lnlt1al state of the vortex ring, WhlCh depends 

on the condltlons at format10n. The rlng strength, for example, 

inlt1ally depends on the magnitude and amount of vorticity ejected, 

WhlCh ln turn lS related to the velocity at eJection and volume of 

eJected fluld WhlCh forms the vortex ring (see Sectlon 5-2.2). The 

*For beautiful pictures of vortex ring formation see Batchelor 
(2, plate 20) and Magarvey, MacLatchy (32). 
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The velocity and vorticity distributions in a real vortex ring. 

From Sullivan, Widna11, and Ezekiel (1973). 
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s~ze of the vortex ring ~s expected to be related in some way to the 

diameter of the or~f~ce through which the flu~d ~s ejected [28], and 

the development of turbulence to the roughness and irregularities in 

the orifice geometry. 

In general, as the vortex r~ng propagates through the ambient 

flowfield, vorticity d~ffuses from the core region and small amounts 

of ambient fluid are entra~ned ~nto the rear of the vortex ring, 

mix~ng with the flu~d exter~or to the core [32]. Vortic~ty ~s 

subsequently convected ~nto a wake region along with some dye, 

result~ng ~n a more lightly colored outer reg~on ~n comparison with 

the core. The loss of vort~c~ty from the vortex r~ng results in a 

decrease in r~ng strength and impulse· and, since U and r are directly 

related, a decrease in velocity. 

RING REYNOLDS NUMBER. The relative ~mportance of ~nertial to 

viscous forces in the evolut~on of the vortex r~ng is characterized by 

the Reynolds number. Two common definlt~ons for the r~ng Reynolds 

number are based on the r~ng radius and velocity (ReR) and on the 

total c~rculat~on (Re r): 

Re = R 
2RU 
v 

r (2-23) 

Since r ~ RU, Re R and Rer are expected to be closely related (see 

Section 5-3). 

VISCOUS VORTEX RINGS. At low Reynolds numbers (Re
R 
~ 600-1000) 

vortex ring evolut~on is governed by v~scous d~ffusion of vorticity 

from the core and ~ts subsequent convect~on into a laminar wake. As 

~llustrated ~n Fig. 2-7a streaml~ne surfaces of viscous rings remain 

smooth and the core tends to be th1ck and visually not well defined. 

*The impulse of the ring plus wake is conserved by Eq. (2-llb). 
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Tung and T~ng [66] and Saffman [54] have derived an express~on 

for the velocity of a thin core of viscous, rotational flu~d embedded 

~n a potent~al flow: 

U = r [,\1,n 8R - 0.558 + 0 UVt_ ,\1,n Vt ) ] (2-24) 
41TR 14Vt / R2 RT 

Apparently, for th~n core rings (i.e., ~n the l~mit aiR ~ 0) the core 

rad~us grows due to v~scous diffusion like M and the velocity 

decreases as -In(vt). Accompanying the growth of the core there ~s an 

exponentially slow decrease in r~ng strength [54], and since the 

impulse must rema~n constant, from Eq. (2-14) there ~s a slight 

~ncrease in R. 

For asymptotically large t~mes, when t'V R (Le., a/R'V 1), one 

f~nds a much more rapid decrease in U and increase ~n R [25, 52]: 

r 'V (v t) -1/2 (2-25) 

V~scous vortex rings ~n a real flu~d generally have th~ck cores, 

and measurements show a rate of decrease in velocity and increase in 

radius somewhere between that pred~cted by the extreme thin and th~ck 

core models Just ment~oned (see Sect~on 4-4), although measurements 

made for large times [27] do suggest that the velocity approaches the 

asymptotic lim~t g~ven in (2-25). 

INSTABILITIES. Many researchers [28, 30, 34, 48, 73] have found 

that as the Reynolds number increases, although the flow is st~ll 

laminar, azimuthal waves begin to appear along the core of the vortex 

ring. F~ve waves are typically observed to develop at ring Reynolds 

numbers on the order of 600 to 1000; as the Reynolds number increases 

the number of waves ~ncreases. At the lower Reynolds numbers unstable 

waves are observed to grow unt~l the vortex ring collapses, but for 

higher Reynolds numbers the growth of unstable waves leads to a 

"break~ng" process and the emergence of what is generally described as 

a more stable vortex ring. 
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The instab111ty of vortex rings has been stud1ed mathemat1cally 

by W1dnall ~ ~ [74-77, 66] and Saffman [56]. Perturbations are 

found to become unstable when the locally induced rotat1on of waves 

around a circular vortex filament 1S forced to zero by the veloc1ty 

field 1nduced by the rest of the vortex r1ng. 

TURBULENT VORTEX RINGS. As the Reynolds number lncreases 

further, the wave number of the unstable waves increases and small 

scale turbulence begins to develop. The Reynolds number at WhlCh 

turbulent motions begin to dominate the dynam1cs depends to a large 

extent on 1rregular1t1es and roughness in the or1flce geometry, the 

method of ejectlon [57], the state of the amblent fluid, etc., but 

transltional Reynolds numbers on the order of 20000 to 30000 are 

typical for carefully produced vortex rings. Because of turbulent 

mixing, the outer region of dyed flu1d becomes lighter 1n color, 

revea11ng a fa1rly well-deflned core. The core to ring rad1us of 

vortex r1ngs tends to decrease as the Reynolds number 1ncreases [60, 

57, 36], and the small scale motlons ln the turbulent core are 

relatlvely imperv10us to the larger scale motions 1n the outer m1xlng 

reg~on [35, 68]. As ~nd~cated by Fig. 2-ib, turbulent diffus~on and 

convection of vorticity lnto a turbulent wake results in a rapid 

decrease in ring strength and veloc1ty. 

2-5 PRELIMINARY CONCEPTS BEHIND THE PRESENT STUDY 

Fig. 2-8 outlines the range of ring Reynolds numbers WhlCh have 

been covered in experimental studles of vortex r1ngs, lncluding the 

present study. In general, researchers have concentrated on a limlted 

range of Reynolds numbers. The transition in characterlstlcs from low 

Reynolds number, V1SCOUS vortex rings to high Reynolds number, 

turbulent vortex rings has not been adequately stud1ed. This is an 

important aspect of the present work: 
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To study the changes in the structure of vortex rings and the dynam1c 

processes which control the1r evolution, from very low Reynolds 

numbers where v1scosity dominates, to very h1gh Reynolds numbers where 

turbulent diffusion dom1nates. 

The dynamic processes 1n wh1ch we are interested 1nvolve the 

loss of strength and impulse from vortex rings as they evolve, 

processes wh1ch relate to the d1ffusion and convect10n of vort1c1ty 

out of the vortex r1ng 1nto a wake. A measurement of the strength (or 

total circulation) of a vortex r1ng at even one point 1n space, 

however, 1S difficult to obtain. In the past researchers have used 

laser doppler veloc1meters [50, 36] and hot W1re anemometers [57] to 

measure the velocity around the core of a vortex r1ng in order to 

compute the total circulation. Such measurements rely on a repeatable 

production of the vortex r1ngs, and the use of hot wires raises 

quest10ns as to 1nterference with the inner flowfield. Furthermore, 

t1me constraints have allowed only a very limited number of such 

measurements. 

BASIC APPROACH. We propose as part of the present study a 

method for computlng the total clrculatlon of a vortex ring from 

relatively slmple flow visuallzation measurements of the size, shape, 

and velocity of the vortex rlng. The basic ldea is as follows: 

USlng the B10t-Savart law we find the stream functlon in 

non-steady coordinates for a vortex ring of strength r and radius R 

aXlsymmetrlcally placed in tube of radlus Po (results for an unbounded 

r1ng are obtained 1n the limlt RI Po -+ 0). Transferr1ng to a 

coord1nate system mov1ng w1th the vortex ring at the speed U, the 

outermost closed streamllne outllnes the volume of the vortex rlng. 

Defin1ng the thickness, T, and outer radius, H' of the vortex r1ng 

(see Flg. 2-5), we compute the kinematic relationships among the 

parameters R/Po , r, U, and T/H'. A measurement of any three of 

these quantlties will therefore yield the fourth. In particular, from 
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flow visual~zation measurements of R/po , U, and T/R' at the time, t, 

we can compute r(t), the total circulation of the vortex ring at that 

time. 

Let us consider this approach in more detail. 

KINEMATICS. Consider again the kinematic nature of the 

Biot-Savart law, Eq. (2-4). As discussed ~n Section 2-1, at any given 

time, whether the flow is laminar, turbulent, viscous, or inv~scid, if 

we know the vorticity field we can in princ~ple compute the velocity 

field from Eq. (2-4). In general we do not know the vorticity f~eld 

exactly, or the integrat~on of Eq. (2-4) ~s exceedingly difficult. 

However, in many cases the flowfield can be well approximated and the 

integration simplif~ed by d~vidng it into vortex elements and modeling 

each element as a filament. In this way the simpler integration of 

Eq. (2-6) can be used. Because the Biot-Savart law is linear in 

vorticity, the individual flowfields of the vortex elements can then 

be summed to find the total flowfield. This ~s the case with vortex 

rings. We divide the vorticity f~eld into two parts: the vortex ring 

itself, and the wake. 

APPROXIMATIONS. Furthermore, we make the following 

approximations: 

1 Since vort~city is highly concentrated in the core (see Fig. 2-6) 

we anticipate an inner and outer reg~on to the flowfield.* The 

inner region (~n and "near" the core) will depend on the 

distr~bution and extent of vorticity w~th~n the core. The 

flowf~eld in the outer reg~on ("far" from the core), however, 

should depend only on the total c~rculation of the vortex r~ng, 

*Such observations have led to the use of Matched Inner and Outer 
Expansions by Tung and Ting (67) to study a thin core viscous 
vortex ring. 
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and not the details of the distr1bution of that vort1city. The 

extent of the inner and outer regions will, of course, depend on 

the degree to which vort1city 1S concentrated in the core, however 

we assume that for tYP1cal vortex rings the vort1c1ty is 

suff1ciently concentrated that the shape of the vortex ring can be 

accurately predicted by concentrating the total circulat~on of the 

vortex r~ng along a c~rcular vortex f11ament. 

2. The amount of circulation lost to the wake 1S expected to be small 

~n comparison with the total c1rculat1on of a vortex ring. We 

assume, therefore, that the circulation per unit length behind 

typ~cal vortex r~ngs ~s such a small fraction of the total 

c~rculat~on with~n the r1ng that the vorticity 1n the wake can be 

neglected in computat~ons of the shape of the vortex r1ng. 

MODEL. The accuracy of these two approx~mations will, of 

course, have to be tested (see Sections 3-3.2 and 5-2.1), but for the 

purposes of relat1ng the total c1rculat1on to the r1ng s1ze, shape, 

and velocity, we can now model the vortex ring as a circular vortex 

f11ament axisymmetrically placed in an infin1tely long tube. Using 

the known solution for the potential function of a circular vortex 

f11ament in an unbounded flow, we derive the induced potential which 

must be added to Eq. (2- 1 3) to account for the tube walls. From this 

solut1on the stream funct10n is deduced and the stream11nes in 

non-steady coord1nates calculated. Transferr1ng to a coord1nate 

system moving w1th the vortex r1ng, we assess the effect of the tube 

on the s1ze, shape and velocity of the vortex r1ng, and compute the 

relationships among the non-dimensional parameters 

T R and U 
R Po, r/41TR 

(2-26a) 

and among 
R' R and U 
R , Po, r/41TR 

(2-26b) 
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Because the details of the core are often washed out, flow 

visualization measurements of HI are generally more accurate than of 

H. By combining the computed relationsh~ps among the parameters in 

(2-26a) and (2-26b) we find that either H QC RI can be used to compute 

the ring strength. Thus, from flow v~sualizat~on measurements of 

HI(t), T(t) and U(t) we can compute both rand H as a funct~on of 

time. 

It should be po~nted out that the approximation of concentrating 

the strength of the vortex ring along a circular vortex filament in 

order to compute T and HI is not the same as that made by Kelv~n and 

Lamb to compute the velocity of a thin core vortex r~ng, Eqs. (2-15) 

and (2-16). In calculating the velocity, dynamics enters through the 

use of the Kelvin/Helmholtz theorem for an ~nviscid fluid, Eq. (2-10). 

Under this approx~mat~on the vortex core moves with the local fluid 

velocity, which ~n the lim~t a/H + 0 becomes infinite. The 

approximation used in our calculat~ons assumes that the shape of the 

vortex ring ~s not much affected by the finite size of the core, so 

that for such a calculation the strength of the vortex ring can be 

concentrated along a c~rcle. The calculation is totally kinematic, 

and s~ngularit~es do not appear. Furthermore, k~nemat~c relationships 

are very general ~n that they apply at any instant in t~me where the 

model ~s suffic~ently accurate, and for both laminar and turbulent 

flows. Of course, dynam~cs must be included in some way to predict 

anyone of these quantit~es; however, by combining the kinemat~c 

theory w~th relatively s~mple experiments, ~mportant dynamic 

information can be deduced. 

In the next chapter we develop the theory and calculate the 

relationships among the parameters in (2-26). From the theory we 

assess the e~~ect o~ the tube on the size, shape, and velocity o~ the 

vortex ring. In Chapter 4 flow visualizat~on experiments are 

described, and measurements for vortex rings propagating up a tube are 

discussed. Finally, ~n Chapter 5 the flow visualization measurements 

are combined with theory to compute the total circulation as a 
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function of t~me for 17 vortex r~ngs with ~nit~al Reynolds numbers 

ranging from 690 to 50100. 
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3 
Theory 

3-1 INTEGRAL SOLUTION FOR A CIRCULAR VORTEX FILAMENT IN A TUBE 

3- 1 .1 Harmonic Expansion for the Unbounded Ring 

Cons1der the problem 1llustrated in Fig. 3- 1 • We seek the 

solution for a c1rcular vortex filament with strength r and radius R 

axisymmetr1cally placed 1n an 1nfin1te, rig1d tube of radius Po. The 

flow 1S 1ncompressible, but not necessar1ly inv1sc1d. Because the 

flow 1S axisymmetric (and without swirl), we introduce the cylindrical 

coord1nate system (p, 8, z) fixed w1th respect to the tube such that 

at the t1me t the vortex filament 1S located in the z = 0 plane. The 

vortex ring 1S mov1ng 1n the +z d1rect1on w1th the speed, U; we seek 

the Solut1on for the flowfield at an instant in time in a non-steady 

frame of reference. 

Outside of the vortex filament the flow is 1rrotational, so we 

define the veloc1ty potential: 

<3-1 ) 

-+ 
where x is a position vector to the point (p, z). ~ is further 

div1ded into two parts: 

~o + ~. 
1 

32 

(3-2) 
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~ 

¢o(x) 1S the potent1al for a circular vortex filament in an unbounded 
~ 

flow and ¢i(x) represents the potent1al fleld 1nduced by the presence 

of the tube. ¢. must satlsfy Laplace's equation and, together with 
1 

¢o, the boundary cond1tion of no flow through the tube wall: 

(3-3a) 

at P Po (3-3b) 

¢o is given by Eq. (2-13) as: 

-+ 
¢o(x) = a r -+ 

II az (47Tr) dA(I;;) 
A 

(3-4a) 

where A lS the area of the disk bounded by the filament, ~ is a 
-+ -+-+ 

posltlon vector to a pOlnt on the disk and r = x-t;. (see Fig. 2-4). 

ThlS express10n shows that the c1rcular vortex fllament can be 

represented mathematically as a dlSk of d1poles with un1form strength 

r. At the d1Sk surface there is a d1scontinuity in potential of 

magnltude r as lllustrated ln F1g. 3-2. Lamb [29, p. 239] presents 

the potential for such a disk of dipoles ln terms of Bessel functlons 

of the flrst kind: 

¢o (p, z) 

co rR 
-2 I 

o 
e-kz Jo (kp) Jl(kR) dk (3-4b) 

Eqs. (3-4a) and (3-4b) are equivalent expressions for the non-steady 

potential fleld due to a circular vortex fllament in an unbounded 

flow. 

In order to obtain the solution of the potenhal ¢. which must 
1 

be added to Eq. <3-4) to satlsfy the boundary condltlon at Po, we 

expand 1nto an harmon1c series valld in the reglon p> R and find the 

induced potential for each term separately. Conslder the outer 
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var~ables defined as 

=£ - Z x 
p Z = - x = -

Po Po Po 
(3-5a) 

and the inner var~ables: 

- =£. Z x 
P Z = - x=-

R R R 
(3-5b) 

where x = /p2+Z2. Rewriting <3-4b) m outer vanables we obtain 

(3-6) 

- ,..., 
where € = R/Po < 1. The ~nner var~able, P = P / € indicates that to 

obta~n an expansion val~d in the far f~eld we should expand ~n the 

lim~t € ..... O. Therefore we expand J 1 (k€): 

Jl(ks) = (ks) (kS)3+ (kS)5 (3-7) 
-2- - zr:4 zr:42 ·6 

Subst~tut~ng Eq. (3-7) ~nto (3-6) and noting that 

results in 

-kz 
e (3-8) 

00 

f e-kzJo(kP)dk 
o 

(3-9) 

The ~ntegral ~s the Laplace transform of Jo and has the value 1/X. 

Thus ~n the reg~on P > R we have reduced the ~ntegral ~n Eq. (3-6) to 

a ser~es of harmonic poles at the or~gin: 

... ) (3-10) 

The first harmon~c, wh~ch is dom~nant in the far f~eld, represents a 

dipole field, show~ng that at infin~ty a vortex ring looks like a 

po~nt d~pole. The h~gher order poles account for the var~ation from 
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that of a purely d1polar f1eld due to the f1n1te Slze of the vortex 

r1ng. 

We note that the expanS10n given 1n Eq. (3-9) could have been 

obta1ned as well from the representat10n for qio given by Eq. <3-4a) 

by expanding 1/r 1n a Taylor ser1es about 1/x and carrying out the 

integrat10ns term by term. 

3-1.2 Monopole Solution: The Green Funct10n 

Consider an expansion In a form slmilar to Eq. (3-10) for the 

total potentlal, qi = qio + qi 1 : 

¢(-p,z) = £r(£~ ~ £3 d
3 

<p + £5 ~ <p 
2 2 dZ ~m - 22 '4 dZ 3 m 22 .42 .6 dZ 5 m - ... ) (3-11) 

Exam1nation of Eqs. <3-3) and (3-10) shows that ¢m is the potentlal 

funct10n for a monopole at the or1g1n 1n a tube. That lS, <p 1S the m 
Green funct10n to Laplace's equat10n w1th the Neumann boundary 

cond1t10n and must sat1sfy: 
+ 

- 4mS (x) 

= 0 at p 1 

In a form which satlsfies Eq. <3- 12a) we wnte <p as: m 
00 

<Pm(p,Z) = ~ + { f(k)Io(kp) cos(kz)dk 

(3-12a) 

(3-12b) 

(3-13) 

where f(k) 1S chosen to satisfy (3-12b). 1/x has the 1ntegral 

representatlon [6]: 

00 

~ = 1 f Ko(kP) cos(kz)dk 
x 'IT 0 

I and K are mod1f1ed Bessel functlons of the first and second k1nd 
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respectlvely. So Eq. (3-13) can be wrltten: 
(X) 

~ = J [~~o(kP) + f(k) Io(kP)] cos(kz)dk 
m 0 7T 

Applying the boundary condltion, (3-12b) requlres that 

f(k) 

Insertlng thlS expreSSlon into (3-13), the Green functlon becomes: 

(X) 

~m(p,z) =! + ~ J KI(k) Io(kp) cos(kz)dk 
x 7T 0 I I (k) 

(3-14) 

3-1.3 The Potential and Stream Functions In Non-Steady 

Coordinates 

Substltuting Eq. (3-14) lnto (3- 11 ) for 

subtract1.ng qio as g1.ven by Eq. (3-10) results In the followlng 

representation for the induced potent1.al: 
(X) 

rE E;) E3 ;)3 E5 ;)5 ,KI(k) ~) 
~.(p,Z) = --(-~ - ~~3 + 2 2 ~ - "')oII(k)Io(kP)cos(kz dk 

1 7T 2;)z 2·4 aZ 2·4·6 aZ 

Perform1.ng the d1.fferentations results l.n 

The series in the brackets is recognlzed as that for I1(Ek). Thus the 

potentlal fleld induced by the presence of the tube on a vortex ring 

is glven In outer variables by 
(X) 

~ (~p~) - ~ J KI(k) II(Ek) Io(k~p) sin(kz)dk 
~i ,z = 7T 0 lI(k) (3-1Sa) 
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and in regular varl.ables by 

<P. (p,z) 
1. 

Theory 38 

(3-15b) 

The total potentl.al for a cl.rcular vortex fl.lament in a tube is, of 

course, gl.ven by ip = ip,o + ip l. where (ji 0 l.S given by Eqs. <3-4b) and 

(3-6). The solutl.on l.S valid at an instant in time l.n a frame fixed 

with respect to the tube. 

ST REAM FUNCTION. We defl.ne a stream function '¥ as l.n Eq. 

(2-20). Agal.n we wrl.te the stream function as the sum of that for a 

circular vortex fl.lament in an unbounded flow, plus the stream 

function l.nduced by the presence of the tube: 

(3-16) 

from the relatl.ons 

and Eq. (3- 1 5b) one can deduce the l.nduced stream function: 

'l'i(P,z) (3-17) 

In a sl.ml.lar manner the stream functl.on for an unbounded vortex ring 

can be deduced from Eq. (3-4b): 

'l'o(p,z) (3-18) 
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3-2 THE POTENTIAL AND STREAMLINE FIELDS IN THE FIXED FRAME 

3-2.1 Inner and Outer Expansions for the Unbounded Ring 

In order to compute the constant potential llnes ~nd streaml1nes 

for the bounded vortex r1ng we expand ~ 0 (p, z) and '¥ 0 ( p, z) 1nto 

two series, one val1d in the 1nner reg10n p < R, and one in the outer 

reg10n p > R. we will llkewise expand the lntegral representations 

for and ~ (p, z) 1nto ser1es, however only one series 1S required 
1 

since there are no discont1nuit1es 1n ~. ln the region p < Po 
1 

NON-DIMENSIONALIZATION. Computations are carried out ln outer 

variables for the reg10n p < 1 and z < 1. Consider the following 

non-d1mensional forms for the potentlal and stream functlon, 

designated with a hat: 

(- -) r ~(--) 
<I> p,z = 4TI ~ p,z (3-19a) 

(3-19b) 

OUTER EXPANSIONS. We are interested in expansions with which to 

compute i 0 and ~ 0 in the region p > E: . Such an expansion is glven 
A 

for ip 0 by Eq. <3-10), resulting 1n the following expression for ~ 0 : --Outer (p > E: ): 

1 
- ••• ) -:::::r 

X 

(3-20) 
Note that as z .... 0, iP 0 .... O. To derive the outer 

expanslon for'¥ 0 «(J, 'Z) we wr1te Eq. <3- 11) in outer variables and 

expand J
1

(kE:) for small E:. Agaln uS1ng the relation given by Eq. 

(3-8) we end up w1th an expression slmilar to (3-9), except that the 

Laplace transform 1S of J 1(kp) rather than Jo(k~). The resultlng outer 
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expanSl.on for 'f 0 is: 

Outer ( P > € ): 

INNER EXPANSIONS. To derive an expansl.on for qi 0 vall.d 1n the 

region P ( € we expand Jo (k p) in Eq. <3-6) in the lJ.mit p'" o. 
Again making use of Eq. (3-8) results l.n: 

00 _ 

-kz Je Jl(kE:)dk 
o 

(3-22) 

The integral can be found in tables for Laplace transforms resulting 

in the l.nner expansion 

Inner (p (E:): 

(3-23) 

~ + '" r 
Note that in the l.nner region as z... 0, qio .... -21T and qio'" - '2 as 

... 
l.llustrated l.n Fig. 3-2. The inner expansion for 'fo is derived from 

Eq. (3-18) in a sl.ml.lar manner, fl.rst convertl.ng to outer variables, 

then expand in! J 1 (kP) for small p. The resulting senes is: 

Inner (p (€): 

(3-24) 

3-2.2 Expansions for the Induced Field 

The wall-l.nduced fields can be thought of as resulting from an 

"image" vortl.cl.ty distributJ.on outside the tube. The flow within the 

tube is therefore potentialand expansl.ons of 'f1 

uniformly valid throughout. 

and qi are 
1 
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.-
Conslder the l.ntegral solutlon for '1' 1. wrl.tten in l.nner 

varl.ables. From Eq. (3- 1 7): 

(3-25) 

We expand 11 (ke), 1, (kt.p' and cos kEZ in the ll.mit of small € The 

resul t l.S a series In € whl.ch we wrl.te in the form: 

" ~3 (p,z) (3 + ~s (p,z) (s + . (3-26a) 

where 

1 
(b,+ + 2 ° 4 b 2) Y,+ (3-26b) 

1 1 
(b6 + 2.4 b,+ + 2°42°6 b2) Y6 

etc. 

The coeffl.cl.ents, bn and Yare gl.ven by: 
n 

-2 -'+ --2 
b2 (E-) bl! 

p pz 
= = (zr.t; - 2· 2!)' z ' 

-6 -'+ -2-'+ 
P P P Z 

b6 = (2204206 - 2204202! + 204!)' ••• 

00 

Yn 
2 J KI (k) kn dk 

o 11(k) 

(3-26c) 

(3-26d) 

,.. --
The same procedure l.S followl.ng in expanding ~i(P'z) We 

wrl.te Eq. (3- 1 5) in l.nner variables and expand the integrand for small 

e,resultlng In the followl.ng series: 

(3-27a) 

where 
" 
<P3 C2Y2 

" 1 (3-27b) <Ps (C,+ + 204 C2) Y,+ 

" 1 1 
<P7 (C6 + 204 C,+ + 2°42°6 C2) Y6 etc. 
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and 

-z 

(3-27c) 

The integrals Y n defined in (3-26d) must be evaluated numerically. 

Because Yn gets large as n increases we compute instead 

n-l 
kn dk = _2_ 

n! Yn 
(3-28) 

M remains bounded, and has the follow1ng asymptotic form for large n 
n 

[18]: 
1 3 1 9 1 

Mn = 1T ( 2' + '4 ;: + 16 ;:(n-1) + . • .) 

Values of M for n = 2, 4, 6, ... , 100 were numerically evaluated at 
n 

the National Center for Atmospheric Research on their CDC-7600 

computer and are glven ln Table 3-1. 
We might note at this point that before the closed form solut1on 

for the potential function was found, we der1ved its expansion using 

the method of matched asymptotic expansions with E: as the small 

parameter. The inner expanslon is that for the unbounded vortex ring. 

The boundary condltion 1S satlsfied in the outer expansion Wh1Ch in 

the limlt ~ ~ 0 represents a point dipole at the or1gin. Matching the 

two expans10ns at thelr approprlate lim1ts produces the series given 

by Eq. <3-27). 

3-2.3 The Potential and Streamline Fields 

The streamline and potential flelds were computed and plotted ln 

the fixed frame. All computations were done using a PDP-11/45* 

*The PDP-ll/45 was actually emulating a Danish computer called the 
RC-4000. I was very kindly given free use of the computer by Dr. John 
Wilcox and his Solar Physics group in the Institute for Plasma 
Research, here at Stanford University. 
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n 

2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 
50 

M 
n n 

5.0065950 52 
2.5142592 54 
2.0827486 56 
1. 9192741 58 
1. 8358962 60 
1. 7855132 62 
1. 7516317 64 
1. 7271765 66 
1. 7086378 68 
1. 6940734 70 
1. 6823163 72 
1. 6726200 74 
1. 6644831 76 
1. 6575556 78 
1. 6515855 80 
1. 6463865 82 
1. 6418178 84 
1. 6377712 86 
1. 6341616 88 
1. 6309220 90 
1. 6279980 92 
1. 6253456 94 
1. 6229285 96 
1.6207169 98 
1. 6186854 100 

TABLE 3-1 

Numerically computed values for M • 
n 
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M 
n 

1.6168130 
1. 6150816 
1. 6134759 
1.6119827 
1.6105904 
1. 6092893 
1. 6080706 
1. 6069268 
1.6058511 
1. 6048377 
1. 6038812 
1. 6029771 
L 6021210 
1.6013094 
1. 6005387 
1. 5998061 
1. 5991086 
1. 5984440 
1. 5978098 
1.5972041 
1.5966250 
1. 5960707 
1. 5955397 
1. 5950306 
1. 5945420 
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computer and an HP-7221A plotter. Developing algol procedures to 

calculate the cylindrical harmonics, Eqs. (3-20) and (3-21) were used 
..... 

to compute the potential and streamlines in the outer region (P) € ), 
..... 

and Eqs. <3-23) and <3-24) in the inner region ( P)€ ) of the 

unbounded circular vortex f1lament. 
"" "" 

To compute the induced f1eld, the expanded forms of '!' i and ~ i 

as given by Eqs. (3-26) and (3-27) were used along with the 

numerically calculated values for M given in Table 3-1. The total 
n 

potential and streamline fields are the sums of the unbounded and 

induced fields Wh1Ch were calculated separately. All computat1ons 

were performed in outer variables over a 51x51 point grid in the 

region 0 $ (P&~) :s: 1, and extended to the region -1 ~ Z ~ 0 by symmetry. 

Plots were made in the region 0 ::: p~ 1, _1 ::z :: 1; half of the tube is 

shown in the figures. 

The streamlines for an unbounded vortex r1ng in non-steady 

coord1nates were prev10usly sketched 1n Fig. 2-5. For comparison with 

f1gures to follow we show in F1g. 3-3 the streamlines (solid lines) 

and constant potent1al lines (dashed) for an unbounded vortex r1ng of 

Slze € = R/po= 0.4. As demonstrated by Eq. (3-10), 1n a fixed frame 

of reference the non-steady outer f1eld is dipolar in character with 

higher order harmonics becoming less and less important as P + 00 

( 1. e ., as E: +0). 

Compare this wlth the potential and streamline fields for the 

same size vortex ring, but now bounded by the tube walls as shown in 

F1g. 3-4. Although the flowfield still has a d1pole character, the 

flow 1S forced to turn parallel to the tube wall. The effect is a 

generally more aX1al flow. As the core is approached the streamlines 

approach those of the unbounded ring shown in Fig. 3-3. The constant 

potential lines must be perpendlcular to both the boundary and the z 

axis for a bounded ring, resultlng in two streamlines which extend to 

inf1nity in Oppos1te directions. 
A 

The induced f1elds, the SOlld llnes represent1ng constant ~ 
A 1 

and the dashed 11nes constant ¢., are shown in Fig. 3-5, again for 
1 
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----

FIGURE 3-3 

The streamlines and constant potential lines in the fixed frame 

for an unbounded vortex ring with E = 0.40. 
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FIGURE 3-4 

The streamlines and constant potential lines in the fixed frame 
for a bounded vortex ring with E = 0.40. 
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FIGURE 3-5 

The wall-induced streamline and constant potential lines in the 
fixed frame for a bounded vortex ring with £ = 0.40. 
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E=O.40. This field added to the unbounded field of Fig. 3-3 produces 

the pattern which was g~ven in Fig. 3-4. Note that the induced 

veloc~ty field acts in the oppos~te direction to the direction in 

which the vortex ring moves. Thus the tube acts to slow the vortex 

ring as compared with the same ring in an unbounded flow. 

3-3 THE VELOCITY OF THE VORTEX RING IN A TUBE 

As shown by the induced streamlines in Fig. 3-5 the velocity of 

a vortex ring in a tube is that which it would have were it in an 

unbounded flow, less the velocity induced by the presence of the tube: 

U = U 0 - Ui <3-29 ) 

where Uo is the velocity of the unbounded vortex ring and U1 the 

wall-induced velocity given by: 

U. = I _! a~i(p'Z)J -
~ R dZ Z = 0, p = 1 

Applying the derivative to Eq. (3-27) and using the numerically 

calculated values for M results in the following power series in E2: 
n 

U. = 4;R (5.006595 E 3 + 2.828542 E 5 + 2.440721 E 7 + ••• ) 
~ 

(3-30) 

Note that U. depends only on r and not on the details of the 
~ 

vortic~ty distribut~on in the core. This is because the induced 

velocity is ~n the far field of the ~mage vortex system residing 

outside of the tube. We non-dimensionalize the velocity as follows: 

"-and wr~te U ~n the form: 
~ 

0-31) 
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<3-32) 

10 1 
The calculated values for the coeffic~ents up to O(c ) are given in 

Table 3-2. 

RADIUS OF CONVERGENCE. Consider the power series P = ~a cn 
n 

By the d'Alembert ratio test the radius of convergence Co ~s g~ven by 

Co 
lim I an_ 1 I 
n + 00 a (3-33) 

n 

Examining the coeff~c~ents ~n Table 3-2 for large n suggests a rad~us 

of convergence of 1. We show this graphically w~th a Domb-Sykes plot 

[71]. Assuming that near a singularity the power series can be 

represented as 

a. 
(Eo -E) (3-34) 

we expand using the b~nomial theorem in powers of 1/n to produce: 

(3-35) 

As n gets large this ratio approaches 1/Eo linearly with 1/n. At 1/n 

approaching zero, therefore, the intercept yields the radius of 

convergence, while the slope ind~cates the type of s~ngularity. 

The Domb-Sykes plot for U. is g~ven in Fig. 3-6. There is 
~ 

little doubt that the resulting curve approaches the ordinate at 

a 1/a = 1 with a slope of 1. We conclude, therefore, that the power 
n+ n 

series for U. converges for values of E up to 1 (i.e., for any size 
~ 

vortex ring), with a simple pole at E = 
The decrease in r~ng speed due to the presence of the tube is of 

Small vortex rings would not be much affected while 

larger rings might be substantially affected by the boundaries. In 

Fig. 3-7 U./Uo is plotted as a function of E for different values of 
" ~ 
Uo. We express U 0 in terms of aiR as def~ned by the Kelvin/Lamb 
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'" u 
n n 

3 5.006595 
5 2.828542 
7 2.440721 
9 2.296007 

11 2.223716 
13 2.180712 
15 2.152066 
17 2.131493 
19 2.115936 
21 2.103728 
23 2.093875 
25 2.085750 
27 2.078929 
29 2.073121 
31 2.068113 
33 2.063750 
35 2.059915 
37 2.056517 
39 2.053484 
41 2.050762 
43 2.048303 
45 2.046073 
47 2.044039 
49 2.042178 
51 2.040469 

'" U 
n n 

53 2.038892 
55 2.037434 
57 2.036082 
59 2.034824 
61 2.033650 
63 2.032554 
65 2.031526 
67 2.030562 
69 2.029655 
71 2.028800 
73 2.027993 
75 2.027230 
77 2.026508 
79 2.025823 
81 2.025172 
83 2.024554 
85 2.023965 
87 2.023404 
89 2.022869 
91 2.022357 
93 2.021868 
95 2.021400 
97 2.020951 
99 2.020521 

101 2.020108 

TABLE 3-2 

Coefficients for the wall-induced velocity 
of a vortex ring in a tube. 
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FIGURE 3-6 

A 

The Domb-Sykes plot for U .• 
1. 
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FIGURE 3-7 

The wall-induced velocity of a vortex ring in a tube. 

Uo is given by the Kelvin/Lamb formula. 
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FIGURE 3-8 

The analog of a vortex pair in a channel. 

i) only the first images are shown. 

ii) the upper arrows indicate the induced velocity 
from the opposite vortex, while the lower 
arrow is that for the image vortex. 

iii) the large arrows indicate the direction of 
motion of the vortex pair. 
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formula for the velocity of a thin core vortex ring with constant 

vorticity in the cor€ [see Sect~on 2-3.1, Eq. (2-15)]: 

_ r 8R 1 
U 0 - -(in - - -) 

4rrR a 4 

Note from F~g. 3-7 that for a given Uo (or aiR), as the vortex ring 

increases ~n size, the wall induced velocity increases until it 

reaches a value equal to Uo• At this point the vortex ring does not 

move relative to the tube, and larger rings actually move backwards I 

This can be understood by considering the two-dimensional analog to 

the vortex ring in a tube: a vortex pail" in a channel. As shown in 

Fig. 3-8 as the distance between the vortex pail" increases (i.e., as 

8 increases) the image vortices move closer to the wall, until a 

point is reached at which the velocity induced on one line vortex by 

its image is the same as that induced by the other line vortex. As ,8 

increases further the image system induces an even greater velocity on 

the vortex pail" causing it to move backwards. We note also from Fig. 

3-7 that in comparing two vortex rings of the same size the faster 

moving, and therefore more energet~c vortex ring is affected less by 

the presence of the tube. 

3-4 THE POTENTIAL AND STREAMLINE FIELDS IN THE MOVING FRAME 

3-4.1 The Kinematic Relationships Among Vortex Ring Parameters 

Consider for a moment the dipole representation for a sphere in 

a uniform flow. It ~s well known that a point dipole of strength r 
embedded in a uniform flow with velocity U has a streamline pattern 

which represents an inv~scid, potential flow around a sphere which is 

moving with constant velocity through a stagnant fluid. The size of 

the sphere can be adjusted by varying the dipole strength r or the 

free stream velocity U. For a given U the sphere radius R' increases 
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as r increases, however for a given dipole strength, the sphere S1ze 

decreases as U increases. In other words, there is a kinematic 

relat10nship among H', r, and U. 

Analagous to, but more comp11cated than the d1pole in a un1form 

flow 1S the flowf1eld produced by a vortex r1ng. In a frame f1xed 1n 

space the flow has a bas1cally d2pole character, w1th h1gher order 

poles accounting for the f1nite size of the vortex r1ng. However, 

when one takes into account the vortex r1ng velocity by transferring 

to a coord1nate system movlng with the rlng, a spher01dal volume of 

flu1d accompany1ng the vortex core 1S ident1f1ed. Just as w1th the 

mov1ng point d1pole, the extent of this spheroidal volume is related 

kinematically to the strength r and speed U of the vortex r1ng, and 

as wi th the d1pole, an increase 1n r or a decrease in U resul ts in an 

increase in the volume of fluid within the spheroid. Unllke the point 

dlpole, however, the vortex rlng has a f1nite radius H, resulting in a 

spheroidal rather than a spherical reglon of flu1d w1th1n the vortex 

rlng.* We m1ght also expect that the f1n1te extent of the core, and 

the vortic1ty distr1bution w1thin the core would have an effect on the 

volume of the vortex ring. However, as shown in the next section, 

th1s effect 1S very slight. 

For a vortex ring 1n a tube a purely k1nematlc relationsh1p also 

eX1sts among the vortex rlng parameters, but w1th add1t10nal effects 

due to the boundaries. In the last sectlon we analysed the effect of 

the tube on theveioc1ty of the vortex r1ng. We will assess here 

changes in vortex ring size and shape result1ng from the presence of 

the boundary. In add2tion, we compute and plot the kinematic 

relationship among non-d1mensional parameters describing the vortex 

ring strength, velocity, size, and shape so that flow visualization 

measurements can be used to compute the total circulation of typical 

*We refer to the whole spheroidal volume as the "vortex ring" and the 
toroidal region in which vorticity is concentrated as the vortex core. 
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vortex rings in a tube or in an unbounded flow, as a function of 

time.-

Let cP and If' be the potential and stream functions in a frame 

fixed to the tube. These functions can be further divided ~nto 

unbounded and induced fields as given by Eqs. (3-2) and (3-16), and 

non-dimens~onal~zed as in Eq. (3-19). The potential and stream 

functions ~n a frame moving with the vortex ring we give the subscript 

s, and can likewise be divided into the unbounded and induced fields. 

They are given by: 

In 

cP 
s 

If' 
s 

non-dimensionalized 

A 

cP s 

A 

If' s 

= cP - uz (3-36a) 

(3-36b) 

form they become: 

A 1 A 

= cP --u z 
8 

(3-37a) 

A 1 A 
-2 = If' +-2 u p 

28 
(3-37b) 

where U is the non-dimensionalized ring velocity as given by Eq. 

<3-31) . 

CHARACTERIZATION OF RING VELOCITY. Ultimately the velocity of 

the vortex ring must be specified either by a calculation which takes 

the dynamics of the flow (~ncluding the vorticity distribut~on) into 

consideration or, as we propose to do here, by an experimental 

measurement. For the purposes of determining ~ts relat~onships with 

other parameters, however, we must vary U in a convenient way. We 

*For a discussion of the motivation and concepts behind this 
calculation please read Section 2-5. 
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begin by d1v1ding it into an unbounded and 1nduced velocity as given 

by Eq. (3-31): 

A 

U = U - U. o 1 

i) U is determined from Eq. (3-32) and depends only on the Slze of 
1 

the vortex r1ng relat1ve to the tube. 

11) 60 1S expressed more conveniently using the core parameter aiR as 

defined by the Kelv1n/Lamb formula extended to a continuous 

vort1c1ty d1stribution [see Sect10n 2-3.1 and Eq. (2-17)]: 

A 8R 1 
Uo = ~n - -

a 3 

W1th this expression we use aiR to specify Uo • 

(3-38) 

We should be careful to note that for the purposes of 

determining the kinemat1c relationships in which we are 1nterested, 

Eq. (3-38) 1S only a conven1ent defln1tion, and aiR 1S used only as a 

parameter to character1ze U o ' Of course, to the extent that the 

Kelv1n/Lamb formula is accurate (see Section 5-2.2) aiR does have 

physical slgnificance as a measure of an effective core radius to the 

radius of the vortex ring, but its use here should not necessar1ly 

1mply its acceptance as an accurate representation of the velocity of 

a real vortex r1ng. 

POTENTIAL AND STREAMLINES. In Figs. 3-3 and 3-4 we compared the 

non-steady streaml1nes for an unbounded and bounded vortex r1ng w1th 

£ = 0.40. Streamllnes and constant potent1al lines in a frame of 

reference attached to the vortex ring are shown in Fig. 3-9 for a 
A 

vortex r1ng with £ = 0.40 and aiR = 0.20 (U o = 3.356). F1g.3-9a 

dep1cts the vortex ring in an unbounded flow, and 3-9b the same ring* 

in a tube. Streamlines are shown as solid llnes and constant 

*By the "same ring" we mean a vortex ring with the same radius 
(i.e., £ or R), the same strength, r, and moving with the same 
unbounded velocity, Uo (i.e., having the same value of aiR). 
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FIGURE 3-9 

The streamlines and constant potential lines in the moving frame for 
a bounded and unbounded vortex ring with £ = 0.40. 

(a) unbounded vortex ring aIR = 0.20 
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FIGURE 3-9 

The streamlines and constant potential lines in the moving frame for 
a bounded and unbounded vortex ring with E = 0.40. 

(b) bounded vortex ring aiR = 0.20 
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potential lines are shown dashed. For reference to the Kelv~n/Lamb 

formula, the streamline correspondng to the designated value of aiR is 

darkened. 

We note f~rst the three reg~ons commonly observed when a vortex 

ring is visual~zed with dye. 

1. The core region, which in these calculations is concentrated along 

a circle. If you use the KelvinlLamb formula as an indication of 

core size the core would be roughly within the darker streamline 

correspond~ng to aiR = 0.20. 

2. The spheroidal volume of fluid which accompanies the core. The 

extent of this region ~s delineated by the outermost closed 

streamline. 

3. The outer ambient fluid through which the vortex ring propagates. 

The streamlines in this region extend to infinity. 

Second we note that the streaml1nes for the bounded vortex ring become 

parallel and the constant potent~al lines perpendicular to the tube 

wall as p ~1, whereas this is not the case for the unbounded vortex 

ring. As to the size and shape of the vortex ring, the bounded vortex 

ring is slightly thicker than the unbounded ring, giving it a sl~ghtly 

greater volume, although for a vortex ring of th~s size the difference 

1S not great. 

In order to see more dramat1cally the effect of the tube on the 

size and shape of the vortex ring cons1der the extreme case of a very 

large vortex ring. In F~gs. 3-10 are shown the streamlines for 

bounded and unbounded vortex r1ngs w1th E = 0.70 and aiR = 0.25. Due 

to viscous effects at the tube wall, such a large vortex r~ng 

(relative to the tube) is not physically realistic, but it shows 

dramatically the change in S1ze resulting from the presence of 

boundaries. The thickness of the vortex ring is increased, result1ng 

1n a larger volume of fluid carr1ed along w1th the vortex core; 

however, this volume of fluid moves at a slower speed. The outer 

radius R' of this extremely large vortex ring is slightly less as a 

result of the tube. 



Section 3-4.1 Theory 61 

FIGURE 3-10 

The streamlines and constant potential lines in the moving frame for 
a bounded and unbounded vortex ring with £ = 0.70. 

(a) unbounded vortex ring 
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, I 
II 
II 

FIGURE 3-10 

The streamlines and constant potential lines in the moving frame for 
a bounded and unbounded vortex ring with E = 0.70. 

(b) bounded vortex ring 
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THE KINEMATIC RELATIONSHIPS. A more detailed description of the 

effects of the tube on the shape of the vortex ring w~ll result from 

calculations of the kinematic relationships among the parameters wh~ch 

characterize the s~ze, shape, strength and veloc~ty of the vortex 

ring. These parameters, ~n non-d~mens~onal form are: 

i) 
"- U 
U = =-:~-r/41TR 

ii) E: = R/po 

"- "-

Uo- U. l. where 

iii) T/R 

"-

U. l. U. (E:) and U 0 l. U 0 (a/R) 

iv) R' /R 

Aga~n we po~nt out that aiR ~s used here only as a parameter to 

character1ze U so that an unbounded vortex r1ng which is 
o , "-

subsequently placed 1n a tube will have the same value of UO, and 

therefore the same value of aiR. 
"-

For a vortex r~ng with g~ven Uo and E: (and therefore 

have calculated the stream funct~on ~ and potential funct~on 
s 

Eqs. (3-37a and b). The th1ckness TIR was then determ1ned 
"-

evaluated at p =0, and R' IR from '1' evaluated at z=O·. s 

U.), we 
"-~ 

<I> from 
s "-

from <I> 
s 

In Fig. 3- 1 1 is shown the variat10n of TIR w1th Uo (01" aiR) for 
"-

E: = 0, 0. 1, 0.2, ... , 0.7. Note that Uo decreases wlth increasing 

aiR. The SOlld curve corresponds to E: = 0, the unbounded vortex ring, 

and the dashed curves to 1ncreas~ng values of E:. We observe an 
"-

upward trend in TIR as aiR increases, that ~s as Uo decreases. 

Analagous to the dipole 1n a uniform flow (as discussed at the 

beginning of this section), this shows that for a vortex r~ng of given 

rad~us, the th~ckness (and volume) increases w1th e1ther decreas~ng 

ring veloc~ty 01" ~ncreasing r~ng strength. Related to th1S, we note 

also that the tube has a greater ~nfluence on vortex rings with 
"-

smaller values of Uo That lS, deviat10ns from the soll.d curve are 

*T d h . . <I> h . dR' d correspon s to t e max1mum 1n s along t e z aX1S an correspon s 
to the zero along the p axis (away from p = 0). 
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The variation of T/R with Uo for different values of E. 

Solid curve: unbounded vortex 
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4th: E 0.60 

5th: E 0.70 
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The variation of R'/R with Uo for different values of E. 

Solid curve: unbounded vortex ring 

Dashed curves 

1st: E = 0.50 

2nd: E 0.60 

3rd: E = 0.70 
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grea ter for slower and for stronger vortex rings. For £ S. 0.3 there 

is little influence of the boundary on the thickness of the vortex 

ring. As £ increases, however, the effect of the tube becomes more 

and more apparent as an increase in the thickness and volume of the 

vortex ring over the same r1ng in an unbounded flow. 
(', 

The var1ation of R'/R with Uo as a function ofE is shown in 

Fig. 3- 1 2 where again the solid curve corresponds to the unbounded 

vortex ring and the dashed curves to increasing values of E. For 

values of E up to about 0.4 the effect of the tube on R' IR is 

negligible and for values up to 0.50 slight. It is interesting that 

the effect of the tube is to 1ncrease R' for large values of U but 
'" 0 

decrease R' for small values of Uo' As E increases, the point at 

wh1ch the dashed curves cross the curve for an unbounded ring moves to 

the left. That is, for very large vortex rings, as in Fig. 3-10, the 

effect of the wall is to decrease R' over an identical, but unbounded 

vortex ring. 

We p01nt out once again that the relationships plotted in Figs. 

3-11 and 3-12 are purely kinematic. Thus, measurements can be used 1n 

conjunction with these results to calculate quantities of 1nterest. 

In Chapter 5 we discuss the use of flow visua11zation measurements 

together with these kinemat1c relationships to calculate the total 

circulation of vortex rings. 

3-4.2 The Effect of a Finite Core on Ring Shape 

As was discussed in detail 1n Section 2-5 we have made the 

assumption that in calculating the relationships between the shape and 

other parameters of the vortex ring we can neglect the fin1te extent 

of the core and concentrate the strength of the vortex ring along a 

circle. In th1s sect10n we perform a calculat10n to test this 

hypothesis. 
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A vortex ring with E = 0.40 and aiR = 0.25 was chosen for the 

test.* Thirty-seven vortex filaments were distr~buted ~n a roughly 

c~rcular area with radius b such that blR = 0.30. The vortex 

f~laments were weighted according to the vort~c~ty d~str~bution ~n a 

real vortex ring as measured by Maxworthy [36, F~g. 6]. The sum of 

strengths of the individual filaments is the total c~rculat~on of the 

vortex ring. Using the l~near~ty of the B~ot-Savart law (see Section 

2-1) the potent~al f~eld was computed by add~ng the fields of the 

~ndividual vortex filaments. 

The constant potent~al lines for a bounded vortex r~ng with the 

total c~rculation concentrated along a single vortex f~lament are 

compared with the vortex ring having a finite core in F~g. 3-13. The 

37 vortex filaments over wh~ch the circulation of the vortex ring ~s 

distributd are indicated with dots. 

A careful comparison of the constant potent~al l~nes (e.g., 

using a l~ght table) shows that d~fferenes ~n vortex ring shape 

between the f~nite core vortex r~ng and circular vortex f~lament are 

extremely small. There appears to be a very sl~ght bulge ~n the 

vortex ring with the f~nite core, but T and R' are v~rtually 

unchanged. Even near the core where one m~ght expect greater 

d~fferences they are slight. Th~s would suggest that for the purposes 

of comput~ng the streaml~ne and potential f~elds outs~de of the core 

of a vortex ring, a vortex f~lament model ~s quite accurate. In 

computations of the velocity of a vortex, of course, the size of the 

core rema~ns a cr~t~cal factor (Section 2-3). A compar~son was also 

made between unbounded vortex rings, but with the same result as the 

bounded case. 

*These values were chosen because most of our experimentally produced 
vortex rings had values of E below 0.4 and calculations based on the 
Kelvin/Lamb formula suggest that for these rings, aIR ~ 0.25 
(Section 5-3). 



Section 3-4.2 Theory 

FIGURE 3-13 

Constant potential lines for a vortex ring with a finite core 
compared with a circular vortex filament. 

(a) finite core 
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FIGURE 3-13 

Constant potential lines for a vortex ring with a finite core 
compared with a circular vortex filament. 

(b) circular vortex filament 

E9 



4 
Experiment 

lUg wlWt.t6 ha.ve Ut:te.e wlWt.t6 wfUc.h 6eed on :thcWL velowy; 
.u.:t:tle wh.vt-t6 have .6ma.U:eJL wfuJt.t.6 a.nd .60 on :to vv.,C.O.6Uy. 

- L. f. Ric.hoJr.d.6 0 n 

Complementing the theoretical calculations, an experiment was 

performed to observe real vortex rings as they propagate up a tube. 

We comb1ne qualitative observations w1th flow visual1zation 

measurements to study the characteristics and development of vortex 

rings from very low to very high Reynolds numbers. In Chapter 5 these 

measurements are comb1ned w1th the kinematic relat10nships described 

in the last chapter to calculate the total circulation of our 

exper1mentally produced vortex rings as a function of time. 

4_1 APPARATUS 

BASIC APPARATUS. The bas1c apparatus is shown schemat1cally 1n 

Fig. 4_1. A plexiglass tube w1th an internal diameter of 11.88 cm., a 

wall thickness of 1 cm., and a total height of 55 cm. 1S secured 

vertically on a heavy, cast iron mount. Seven circular orif1ces of 

different size, 2.5 cm. thick and tapered at an angle of 60 0 are 

mounted 1n the tube. Dp-f1ning d as the orifice diameter and D as the 

tube diameter, the orifice S1zes used in the experiment are: 

diD = 0.10, 0.15, 0.25, 0.32, 0.42, 0.48, 0.64. 

By mounting two Endevco accelerometers on either side of the tube it 

was discovered that when filled with water the tube exhibited a 
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cantilever mode of vibration with a natural frequency of roughly 35 

Hz. To dampen out these unwanted oscillations a heavy metal support 

was added to the top of the tube. 

A single pulse of water is ejected through an orifice by an 

hydraulically activated p1ston. The p1ston speed and stroke length 

are adjustable. A linear potent10meter is attached to the piston to 

monitor its x -t characteristics, and a travel dial is used to measure p 
the stroke length X. From these measurements the average piston 

p 
speed u is calculated, and from 

p 
u 

p 
(d/D)2 

(4-1) 

the slug flow, or "jet" velocity determined. Defining the jet 

Reynolds number as 

U d 
Re. = ~ 

J v 
(4-2 ) 

and comb1ning w1th Eq. (4-1) we see that there is a general 1ncrease 

in Re. with decreasing or1f1ce S1ze. 
J 

EXPERIMENT. The piston speed is adjusted to produce tube 

Reynolds numbers of roughly 5000, 4000, and 3000 where 

Du 
Re = --P.. 

T v (4-3 ) 

The piston travel time 1S held roughly constant at about 0. 1 70 sec; 

thus more fluid 1S ejected at the higher Reynolds numbers. 

In F1g. 4-2 the ma1n components of the experiment are sketched. 

The potentiometer output, a d1rect indication of x (t), is displayed 
p 

on a Tektronix oscilloscope and recorded photographically. Either an 

accelerometer attached to the piston or a pressure transducer mounted 

flush w1th the tube wall 1S used to tr1p the oscilloscope. It is 

found that, except at the lowest values of ReT' the xp-t slope is 
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nearly l1near, indicat1ng constant p1ston speed. An example is shown 

in Fig. 4-3a. The upper curve is output from an accelerometer 

attached to the piston show1ng piston acceleration and deceleration 

periods of about 15 msec. For the lowest values of ReT' the xp-t 

character1st1cs are as shown 1n Fig. 4-3b. We approximate this piston 

trajectory as 1/4 of a sine wave. 

In order to visualize the flow, either dye is inserted into the 

chamber below the orif1ce or hydrogen bubbles are produced from thin 

rings, 1/16 inch in diameter, which just fit on the underside of the 

or1f1ce (see F1g. 4-2). The r1ngs are insulated and wrapped in a 

spiral fashion w1th 2 m1l plat1num W1re to serve as the cathode 1n the 

electrolysis process. Two th1n strips of 5 mil plat1num sheet are 

glued vertically to oppos1te sides of the tube for the anodes. About 

25 cc. of sodium sulfate was d1ssolved in the water as an electrolyte 

and 150 volts applied between the anode and cathode. Tiny hydrogen 

bubbles are swept into the vortex ring as 1t forms, all 

red1ssolv1ng except for those trapped 1n the center of the core, a 

relat1vely stagnant region. In th1s way bubbles can be used to 

measure R, the radius of the vortex ring to the core center11ne. 

The use of dye, of course, allows v1sualization of the total 

extent of the vortex ring. Hed food coloring was injected into the 

chamber below the or1fice to a concentration of about 2% by volume. 

Dye gives the best descr1ption of the format10n process as well as 

qua11tative features such as the heav1ness of the wake behind the 

vortex ring. Quant1tative measurements of the shape of the vortex 

r1ng (i.e., T and H') are made uSIng the dye visualization. 

Unfortunately, although the core region 1S usually darker than the 

outer region of the vortex ring, 1t usually does not contain enough 

detail to determ1ne with prec1sion the locat10n of the core 

centerline. 

MOVIES. H1gh speed 16 mm. color mOV1es were taken for all 

comb1nat1ons of or1f1ce size and tube Reynolds number. Over 190 
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FIGURE 4-3 

Piston trajectory characteristics. 
20 msec/div. 
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sequences, or "runs," were filmed of vortex rings ranging in Reynolds 

number from about 690 to 50100. These mov~es were subsequently 

analysed to obtain both qualitative and quant~tative data. 

With the hydrogen bubble techn~que l~ghting ~s a major problem. 

The intens~ty of the reflected l~ght from the tiny bubbles ~s very 

sens~tive to the l~ghting angle, and the round tube added unwanted 

reflections. By adJust~ng the l~ghts so as to come from above the 
o movie camera at an angle of roughly 10 from the vert~cal, we were 

able to obtain hydrogen bubble movies for all but the slowest vortex 

rings. When using the dye the lighting was from behind the tube and 

reflections were not a problem. 

In order to accurately determ~ne the film speed, a four stage 

timer was constructed i (see F~g. 4-2) consisting of four divide-by-ten 

integrated circuits connected to light-emitting d~odes so as to be 

visible in the movies. The diodes, wh~ch have a rise time of about 5 

microseconds, are arranged ~n four c~rcles of ten each, each c~rcle 

representing a dec~mal place. A sine wave generator provides the 

power and cal~brat~on for the timer. W~th the t~mer v~sible in the 

movies, very accurate cal~bration of film speed was obtained. For 

most runs the f~lm speed was about 100 frames per second. 

4-2 QUALITATIVE OBSERVATIONS 

As dyed water ~s ejected through the orif~ce we observe the 

rollup of the emerg~ng cyl~ndr~cal vortex sheet ~nto a vortex r~ng 

(see Sect~on 2-4), ~ts detachment from the orif~ce, and ~ts 

propagat~on up the tube. In some cases the vortex ring can be 

*By William Janeway to whom we are indebted for a great deal of 
help with the electronics and experiment. 
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observed to veer from the tube axis and l.nteract with the tube wall as 

well. 

SMALLEST ORIFICES. The smallest orifices (diD = 0. 1 0, 0.15) 

produce the smallest and most energetl.c vortex rl.ngs. Assocl.ated wl.th 

the hl.gh jet Reynolds numbers, the vortex rl.ngs have very high values 

of rl.ng Reynolds number and are turbulent l.n character. For these 

small orl.fl.ces the formation of a vortex rl.ng l.S followed by the 

production of a turbulent Jet.* The vortex ring l.nl.tl.ally occupies 

the tl.P of the Jet, but due to the concentrated nature of the 

vortl.cl.ty wl.thl.n the ring, soon breaks away and travels l.ndependently 

up the tube. After the pl.ston has stopped, the Jet qUl.ckly diffuses 

and spreads. The vortex ring, on the other hand, travels rapl.dly up 

the tube followed by a fal.rly heavy, turbulent wake. 

A photograph and drawl.ng of turbulent vortex rl.ngs are shown l.n 

Fl.gs. 4-4 and 2-7b respectively. Wl.thl.n the vortex ring we observe a 

somewhat discernl.ble core regl.on surrounded by a ll.ghter regl.on of 

turbulent flul.d. Wl.th the hydrogen bubble visuall.zatl.on, short 

wavelength falrly small ampll.tude waves can be observed along the 

core. In addition, a bendl.ng mode of oscillatl.on is sometl.mes 

observed; as the vortex rl.ng travels up the tube, the ring of bubbles 

defl.ning l.ts core l.S observed to bend back and forth symmetrically 

about the ring axl.s. 

INTERMEDIATE ORIFICES. The intermedl.ate sl.zed orl.fl.ces (diD = 
0.25, 0.32, 0.42) are assocl.ated wl.th l.ntermedl.ate values of Jet 

Reynolds number, l.ntermediate rl.ng Reynolds numbers, and 

intermediate size vortex rl.ngs. For an example of an "l.ntermediate" 

vortex ring, see the photograph at the beginning of this report (just 

*During the piston motion, a jet of dyed water is indeed observed, but 
after the piston has stopped this turbulent region continues to move 
and develop. In what follows we call this turbulent region a "jet," 
although it may not at all times correspond to an actual jet. 
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FIGURE 4-4 
Example of a vortex ring at the highest Reynolds numbers. 
Note the formation of a turbulent jet behind the vortex ring. 
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before the abstract). As can be observed from thlS photograph, these 

vortex rings tend to be well formed, lamlnar, and ln general appear to 

be quite stable. The core reglon lS typlcally well deflned, and the 

vortex rings propagate wlth 11ttle or no observable wake. 

LARGEST ORIFICES. The largest orlflces (diD = 0.48, 0.64) 

produce the slowest vortex rlngs wlth the lowest Reynolds numbers. A 

result of V1SCOUS dlffusion and convectlon of vortlclty, dye lS 

observed ln a lamlnar wake reglon behind the vortex rlng (see Flg. 

2-7a). An lnterestlng phenomenon lS observed wlth the vortex rlng 

fllmed at the lowest Reynolds number. Apparently a result of 

InteractIon WIth the free surface In combinatIon wIth the tube wall, 

the extremely slow, clearly viscous vortex rIng IS observed to bend 

back as it approaches the top of the tube. That IS, the symmetry 

plane (the z=O plane of Flg. 2-3) takes the shape of a spherlcal cap, 

nose foreward. As the vortex rlng encounters the free surface the 

cap flattens out agaIn, and the rlng breaks down. 

In general, when the vortex rings encounter the free surface the 

radlus qUIckly lncreases, followed by a rapId breakdown.* the vlsual 

result, especlally for those vortex rlngs wlth llttle wake, lS a dyed 

region of fluld at the bottom of the tube where the rlng formed, a 

dyed region at the top of the tube where the ring collapsed, and clear 

water ln between. The smallest vortex rIngs Wlth very hlgh Reynolds 

numbers, however, had suffIcient energy to propel them completely out 

of the tube. 

TRANSITIONAL VORTEX RINGS. Between the three groups of vortex 

rings which were labeled above as coming from the smallest, 

intermedlate, and largest orifIces, are "transltl0nal" vortex rlngs. 

*The increase in radius is understood by considering the image 
vortex ring on the opposite side of the free surface. For beautiful 
photographs of the breakdown of a vortex ring at a surface, see 
Magarvey and MacLatchy (33). 
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These rlngs are characterlzed by two major features. First, one 

observes in these vortex rlngs characteristlcs from both the hlgher 

Reynolds number and lower Reynolds number rings they separate. 

Secondly, these translt10nal vortex r1ngs generally show more signs of 

large amplltude instab1l1ty than do the others. For example, the 

trans1tional vortex r1ngs between the hlgh Reynolds number/small 

orifice and the intermedlate Reynolds number/intermediate or1fice 

vortex r1ngs (d/D ~ 0.15, 0.25) show slgns of generally larger scale 

turbulent mot1ons, but v1sually the development of turbulence appears 

to be somewhat intermittent. Relat1ve to the rings at the highest 

Reynolds numbers, they generally exh1b1t larger ampl1tude osclllations 

as well. One such transitional r1ng exhiblted a "rocking" type of 

lnstabllity (see Section 4-4.3), and another a large amplitude bendlng 

mode of oscillation. The transitional vortex rlngs between the 

intermed1ate and the largest size oriflces (d/D ~ 0.48), on the other 

hand, show slgns of large amplitude lnstability in the sense that a 

greater number of these rlngs would rather abruptly move towards, and 

lnteract wlth the tube wall. At these Reynolds numbers other 

researchers have observed the development and growth of large 

amplltude fairly long wavelength waves along the core centerline 

(Sectl0n 2-4.2). 

INTERACTION WITH THE TUBE WALL. The interactlon of a vortex 

rlng w1th the tube wall 1S an lnterest1ng phenomenon. Except for the 

vortex r1ngs produced wlth an orlf1ce Wh1Ch was intentionally made 

very irregular (Section 4-4.3), the location where the r1ng collides 

with the wall appears to be random. As a vortex ring makes contact, 

one side tends to remaln flxed, or "stick" to the wall whlle the other 

rotates around.* From the hydrogen bubble visualizatlons one observes 

*Again this can be understood by visualizing the image system with 
the 2-D analog of Fig. 3-8. 
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that when the core of the vortex rJ.ng touches the wall, vortex 

stretchJ.ng manJ.fests itself as a rapJ.d tWJ.stJ.ng of the vortex core 

before the ring collapses into a generally turbulent mass of water. 

Subsequently, thJ.s turbulent, vortJ.cal region J.S observed to rotate 

away from the tube wall, apparently the result of the cancellatJ.on of 

some vorticJ.ty by vJ.scous forces at the wall, resultJ.ng J.n a net 

vortJ.cal motJ.on away from the wall. 

4-3 QUANTITATIVE RESULTS 

4-3.1 Data Acquisition 

Data was reduced for 26 sequences or "runs" uSJ.ng both the dye 

and hydrogen bubble vJ.sualJ.zatJ.on techniques. The runs are numbered 

from 1 to 26 J.n the sequence J.ndJ.cated J.n Table 4_ 1 • The values for 

ReT gJ.ven J.n thJ.s table are rough and should be used only as a gUJ.de. 

The calculated values of ReT' more accurate values of diD, Re
j

, and 

other J.nformatJ.on assocJ.ated wJ.th each run are given 1n Table A-1 of 

AppendJ.x A. The fJ.rst step in the acquJ.sJ.tJ.on of data was to project 

each run onto a large sheet of graph paper and, by advancing the 

projector frame at a tJ.me, carefully outlJ.nJ.ng the vortex ring with as 

much detail as possible at many locatJ.ons J.n ltS evolutJ.on. WJ.th the 

4-stage timer, the fJ.lm speed was accurately determJ.ned for each run. 

Thus, knowJ.ng the number of frames between each outlJ.ne, we were able 

to determJ.ne the tJ.me history of the vortex rJ.ngs. Because of the 

care (and tJ.me) which was taken in thJ.s inJ.tJ.al process of "freezing" 

the vortex evolution onto a large sheet of paper, the outlines have 

proved J.nvaluable J.n later interpretations of the data. 

At an average of 35 pOJ.nts per run the followng data was 

recorded for each vortex ring (refer to Fig. 2-5): 

, 
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Run d Rough 

Number D ReT Visualization 

1 0.10 5000 dye 

2 0.10 4000 dye 

3 0.10 3000 dye 

4 0.15 5000 dye 

5 0.15 5000 H2 
6 0.15 4000 dye 

7 0.15 4000 H2 
8 0.15 4000 H2 
9 0.15 3000 dye 

10 0.15 3000 H2 
11 0.25 5000 dye 

12 0.25 5000 H2 
13 0.25 3000 dye 

14 0.32 5000 dye 

15 0.32 4000 dye 

16 0.32 3000 dye 

17 0.42 5000 dye 

18 0.42 5000 H2 
19 0.42 4000 dye 

20 0.48 5000 dye 

21 0.48 5000 H2 
22 0.48 4000 dye 

23 0.48 3000 dye 

24 0.64 5000 dye 

25 0.64 4000 dye 

26 Irregular orifice dye 

TABLE 4-1 

General identification for experimental vortex ring runs 
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x(t) 

R(t) 

The d~stance from the orif~ce; ~.e., the traJectory. 

The rad~us to the core centerline. Th~s w~s obta~ned 

accurately for the vortex r~ngs v~sual~zed w~th hydrogen 

bubbles, and for three rings v~sualized w~th dye. The 

others were est~mated. 

R'(t) The radius of the vortex ring to the outermost streaml~ne. 

T(t) 

From the dyed r~ngs, th~s ~s taken to be the edge of the 

dyed region. 

The thickness of the vortex r~ng. Also obta~ned from the 

dye visualizat~ons, th~s measurement was generally less 

accurate than that for R' due to the presence of a wake. 

In~t~ally the data was reduced completely by hand [4J, but when the 

PDP-1 1 /45 computer was made ava~lable for my use all the data was 

stored on per~pheral d~sk back storage and subsequent data reduction 

handled v~a algol programs. 

CORRECTIONS. For vortex rings formed wlth the smaller or~f~ces 

~t ~s often the case that the piston stops eJect~ng water wh~le the 

vortex r~ng ~s travel~ng up the tube. The traJector~es for these 

rings were therefore corrected by subtracting the piston traJectory 

from the vortex r~ng trajectory. That ~s: 

x(t) - x (t) 
x(t)~{ x( t) - i 

p 

t < T 
P 

t > T 
P 

(4-4) 

where T and X are the plston travel t~me and stroke length 
p p 

respect~vely. In add~tion ~t was necessary to correct the radial 

values for the effect of refract~on. Th~s was made d~ff~cult by the 

presence of three substances w~th dlfferent refract~ve ~nd~ces: a 

cyl~ndr~cal column of water, a 1 em. th~ck plex~glass tube, and the 

surrounding a~r. Deflning P A as the apparent rad~us as seen from 

outs~de the tube and p as the real radius, a short algorithm was 

developed to calculate p/Po as a function of PA/Po . The result is 



FIGURE 4-5 

Refraction corrections: apparent vs. real radius. 
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plotted in Fig. 4-5. All values of Rand RI were corrected for 

refract10n w1th th1S algor1thm. 

4-3.2 Vortex R1ng Velocity 

The traJectory of each of the 26 runs was plotted uS1ng 11near, 

semi-log, and log-log scales. It was d1scovered that for many runs 

one, two, or three linear per1ods, or "reg1mes," can be read11y 

identif1ed on one of the three traJectory plots. In each regime the 

properly plotted trajectory can be f1t with a straight 11ne, the slope 

of the stra1ght line changing from one regime to the next over a 

relat1vely short period of t1me. 

DATA ANALYSIS. Havlng made the 1n1tial discovery that for some 

vortex rings the time dependent form of the r1ng traJectory (and thus 

veloc1ty) can be identified w1th1n reg1mes, an extremely careful 

analys1s was undertaken to obJectively search for and 1dent1fy such 

reg1mes 1n all the runs, and to accurately determlne the slopes and 

1ntercepts of each linear reg1me. 

One approach used was to compute and plot, uS1ng each of the 

three scales, the veloc1ty d1stributlon for each run. Between each 

two data p01nts the slope, or "veloc1ty" was computed. The velocity 

range was then d1vided 1nto b1ns and the number of slopes in each b1n 

determ1ned and plotted. Ideally, a traJectory with three 11near 

reg1mes, for example, would have three peaks in the veloc1ty 

d1str1bution, and as the number of b1ns 1S 1ncreased, each of these 

peaks should split into two or more due to osc111at1ons about the 

mean. Of course, the noise level should go up as well. An example 1S 

shown in Fig. 4-6 for Run 9. Using a 11near scale, three regimes can 

be clearly identified, resulting 1n three broad peaks in the veloc1ty 

dlstribut10n w1th 10 b1ns. Increasing the number of b1ns to 15, the 

three peaks are better def1ned and begln to split. W1th 30 blns each 

major peak has split lnto two smaller peaks. In general, however, 
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th1s method d1d not work well. Due to the low number of p01nts 1n 

each bin to beg1n with, the n01se level is usually too h1gh to obtain 

the quant1tative information des1red. 

A more fru1tful approach to objectively 1dent1fy these linear 

regimes 1S to choose a p01nt near the beginning of a reg1me, and 

compute the slope from that data p01nt to each succeSS1ve p01nt. 

Numbering the data p01nts 1, 2, 3, ... , and plotting the slope from 

the first p01nt to each succeSS1ve point vs. the p01nt number, we 

would expect that 1f a 11near reg10n eX1sts, the plot would osc111ate 

at f1rst, but soon settle down around the mean slope of that reg1me. 

The end of the regime would be 1dentified as the location where the 

plot begins to move away from the mean slope. Having ident1f1ed the 

end of a reg1me, one can then choose a fixed p01nt near this end, and 

repeat the procedure in the Oppos1te d1rect10n 1n order to 1dent1fy 

the beg1nning of the regime. 

This techn1que worked quite well, w1th two mod1f1cations. 

F1rst, rather than compute the d1rect slope to succeS1ve points, the 

least squares fit to a straight 11ne was computed. The result1ng plot 

can be expected to dampen more rap1dly to the mean value desired. In 

add1t10n, the mean value for the slope of a regime 1S now obta1ned 

with a least squares fit over all the data p01nts w1thin that reg1me. 

The second mod1f1cation was to compute the average res1duals along 

with the least squares fit, and plot them also against point number. 

When the end of a regime is encountered, the value of the residual 

1ncreases sharply. The result 1S an excellent 1nd1cat10n of the 

beginn1ng or end of a regime. 

Using Run 9 again as an example, a plot of least squares f1t 

slopes and res1duals from point 9 (the beginning of the f1rst 

reg1me) to succeeding points is shown 1n Fig. 4-7. The end of the 

first reg1me 1S clearly ident1fied from the plot of the res1duals as 

p01nt 20, and the slope is seen to oscillate but soon settle down 

around the value 83.7. 
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The least squares fit slopes and residuals 
vs. point number for Run 9. 
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RESULTS. The result of this analysis is that one, two, or three 

linear reg1mes can be ident1f1ed for all our experimentally produced 

vortex rings (except for Run 8; see Sect10n 4-4.3). We f1nd that 

based on the scale used, the vortex r1ngs can be divided 1nto three 

groups wh1ch parallel the three class1f1cations discussed 

qual1tat1vely 1n the last sect10n. These groups are: 

Smallest or1f1ces/H1ghest values of Jet and r1ng Reynolds number: 

x(t) ~ In t (semi-log scale). 

2. Intermed1ate orif1ces/Intermediate values of Jet and r1ng Reynolds 

number: 

x(t) ~ t (11near scale) 

3. Largest Orif1ces/Lowest values of Jet and ring Reynolds number: 

In x(t) ~ In t (log-log scale). 

The slopes for each reg1me for the 26 runs are g1ven in Table A-2 of 

Appendix A. 

The observation that regimes can be ident1f1ed 1n the traJetory 

has signif1cance w1th respect to the veloc1ty of the vortex r1ng. 

What we have found 1S that at all Reynolds numbers vortex r1ngs 

propagate through reg1mes where the t1me dependent form of the r1ng 

velocity can be ident1fied, two reg1mes being separated by a sudden 

change in the velocity of the vortex ring. In addit10n, we find that 

the form of time dependence can be grouped by Reynolds number as 

follows: 

1. High Reynolds number, turbulent vortex rings: 

U = 
A 

n 
t 

where A > A 1 n n-, 

2. Intermed1ate Reynolds number, laminar vortex r1ngs: 

U = B where B < B n n n- 1 

3. Low Reynolds number, viscous vortex rings: 

U = constant x t-an where a >a n n-1 

(4-5a) 

(4-5b) 

(4-5c) 
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The subscrl.pt n indl.cates a regl.me; the values A , B ,and a are n n n 
constants within a regl.me but dl.fferent from one to the next. For 

example, a vortex rl.ng of "l.ntermediate" Reynolds number travels wl.th 

a constant mean velocity for a perl.od of time, goes through a rapl.d 

change l.nvolving a decrease l.n speed, and contl.nues l.nto the next 

regl.me again Wl.th a constant velocl.ty, but slower. 

Consistent wl.th the description of "transitl.onal" vortex rings 

given l.n the last section, we find that the transitl.on in the time 

dependent form of ring velocl.ty as you move from one group to the next 

does not happen abruptly. For example, the fl.rst two regl.mes of Run 4 

are best represented with a semi-log scale but the third regime with a 

linear scale, indl.catl.ng a transitl.on from the turbulent to the 

laml.nar group. Between the intermedl.ate and low Reynolds numbers is 

Run 22, where a ll.near scale l.S best in the first regime, but a 

log-log scale l.n the second. 

One addl.tl.onal note should be made with respect to repeatability 

of these results. After reducing the data for Runs 9 (dye) and 10 

(hydrogen bubble) l.t was dl.scovered that the values for T ,X and 
p p 

therefore ReT and Re j were nearly the same. One would hope therefore, 

that the traJectories of the two vortex rl.ngs would be close to one 

another. Indeed, as l.S shown l.n Fl.g. 4-8, when plotted one on top of 

the other there is very ll.ttle difference between the two. Thl.S 

observation gl.ves us confldence l.n the stabl.lity of our experl.mental 

procedure. 

4-3.3 Vortex Ring Radius and Thl.ckness 

Along Wl.th the trajectory, the radl.l. Rand R' and the thickness 

T of the vortex rings were measured. Radl.al values were corrected for 

refractl.on from the calculatl.ons presented l.n Fl.g. 4-5. Values of R' 

and T were obtained from the vortex rings vl.sualized Wl.th dye, and R 

from those vl.sualized wl.th hydrogen bubbles. Accurate values of R 

were also obtalned from dye vl.suall.zatl.on measurements in Runs 13 and 
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15, and fa1rly accurate values in Run 14. W1th these runs clear 

water, wh1ch was entrained upon formation of the vortex ring, marked 

the center of the core. 

The volume of the vortex ring was computed from T and R' using 

the formula for an ellipsoid, 

(4-6 ) 

in order to compare with the volume of flu1d ejected from the orifice 

V •• 
eJ 

The rat10s R'/po, R/po, T/po, V/V , and T/R' were computed and eJ 
plotted as a funct10n of time for each run. These plots are given 

also 1n Append1x A, F1gS. A-1 through A-26. The mean of R'/po and 

T/R' are approx1mated with stra1ght l1nes calculated by a least 

squares fit. 

Using these plots together with the traced 1mages of the vortex 

rings, a formation t1me 1S determ1ned for each run. The vortex ring 

1S estimated to have completed its initial format1on process and to be 

independent of the eJect10n at th1s time. A list of these initial 

t1mes to and the result1ng in1t1al r1ng Reynolds numbers for each run 

1S given in Table B-1 of Appendix B. 

4-4 DISCUSSION 

4-4.1 Reynolds Number Dependence 

It was found that the three classes of vortex r1ngs wh1ch are 

1dent1f1ed by the time dependent form of veloc1ty can be grouped by 

Reynolds number. In Section 2-3.2 we p01nted out that thevelocity of 

a vortex r1ng 1S d1rectly proportional to the strength and inversely 

proport1onal to the rad1us of the vortex ring. That is, 

r 'V UR (4-7) 
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A change 1n veloc1ty, therefore, 1S an 1nd1cat10n of changes 1n the 

total circulat10n of the vortex r1ng Wh1Ch result fromdiffus10n of 

vort1c1ty from the core and convection 1nto the wake. 

HIGH REYNOLDS NUMBERS. The vortex rings at very h1gh Reynolds 

numbers are found to be dom1nated by small scale turbulent motions. 

Qual1tative observat10ns of these rings suggest that vort1city 13 

constantly be1ng eJected from the vortex r1ng 1nto a rather heavy 

wake, apparently a result of turbulent diffus10n from the core (see 

photograph in F1g. 3-4 and draw1ng in Fig. 2-7b). This be1ng the 

case, one would expect from Eq. (4-7) a decrease in veloc1ty 

cons1stent with a rap1d loss of strength from turbulent diffusion and 

convect10n of vorticity. 

From the traJectory plots we f1nd that for ReR ~ 20000 - 30000 

and above the decrease 1n vortex r1ng veloc1ty goes 1nversely with 

t1me. From Eq. (4-5a), U = A It. A 1ncreases from one regime to the 
n n 

next, suggest1ng a possible 1ncrease 1n veloc1tYi however, the slope 

analys1s 1nd1cates that the veloc1ty at best rema1ns constant dur1ng 

this short trans1t10nal per10d, and might decrease slightly. 

Both Maxworthy [34] and Krutzsch [28] have reported a 1ft 

veloc1ty dependence for vortex r1ngs at h1gh Reynold~ numbers, as well 

as a trans1tlonal per10d where the veloc1ty rap1dly changes. The1r 

data, however, 1nd1cates a decrease 1n the slope A rather than an 
n 

1ncrease. The reason for the d13crepency 1S unclear. 

LOW REYNOLDS NUMBERS. At the Oppos1te extreme are the vortex 

rings at very low Reynolds numbers Wh1Ch are dominated by V1SCOS1ty. 

The observance of a laminar wake suggests a loss of vort1city from the 

vortex r1ng resulting from viscous d1ffus10n of vort1c1ty from the 

core and convection 1nto the wake. We would expect, therefore, a 

decrease 1n total c1rculation and velocity cons1stent w1th the much 

slower process of molecular d1ffus10n. 

Our exper1mental results 1ndicate that for ReR ~ 1000 - 2000 and 
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below, a much less rapid decrease in veloc1ty is observed. From Eq. 

(4-5c) : 

U '" 
1 
a. 

t n 

(4-5c) 

where a. 1ncreases from one reg1me to the next and has values '" 0.13 
n 

to 0.27. Th1S result 1S consistent with the models for V1SCOUS vortex 

rings discussed in Section 2-4.2. For the extreme of a thin, viscous 

core of vorticity the velocity decreases more slowly than (4-5c), like 

-In t. On the other hand, in the asymptot1c limit of large times, 

when the core has the maX1mum th1ckness possible, the velocity 

decrease is more rapid than (4-5c), like t-3/2 . The measured rate of 

velocity decrease is cons1stent with these models since the Slze of 

the core for experlmentally produced vortex rings is generally 

somewhere between these two mathematical extremes. It is interestlng 

that both the asymptotlc and the measured velocities have a power law 

form. The observatlon that a. lncreases from one regime to the next 
n 

mlght suggest that for large times a. -+ 3/2. 
n 

INTERMEDIATE REYNOLDS NUMBERS. We have found that for a very 

wlde range 0 f Reynolds numbers ReR '" 2000 to 20000, the vortex rlngs 

propagate through regimes of constant velocity. That lS, 

U = B n 

where B decreases from one reglme to the next. These vortex rings 
n 

tend to be well formed with little or no apparent wake, indicating 

little loss of vortlclty from the ring, and therefore little change in 

ring strength; an example lS shown in the photograph just before the 

abstract. Whereas the vortex rings at high Reynolds numbers are very 

turbulent in character, and those at low Reynolds numbers are viscous, 

the vortex rings in the intermediate Reynolds number range exhlblt a 

basically inviscid character. It appears that the Reynolds number is 

high enough for these rings that viscosity lS not important, yet low 
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enough that turbulence has not developed. 

4-4.2 Periods of Rapid Change: Instabilit1es 

Between each reglme is a short per10d of rap1d change 1n 

veloc1ty, suggest1ng sudden changes ln the structure of the vortex 

r1ng. It lS natural to suspect that these sudden changes 1n veloc1ty 

are related 1n some way to the development of instab111t1es along the 

vortex core. There 1S some eV1dence to support this V1ew. 

Waves along the vortex core result in osc111ations 1n the 

measured vortex r1ng radius about a mean (see f1gures in Append1x A). 

It 1S reasonable to suppose that a breakdown in the structure of the 

core, say by the breaking of unstable waves [36], would man1fest 

1tself as unusually large osc1llat1ons, or a sudden change 1n the r1ng 

rad1US. As the core reorgan1zes from such a breakdown, f1n1te 

amounts, or chunks, of vort1cal flu1d m1ght be ripped from the core, 

convected to the outermost reg10n of the vortex r1ng, and f1nally 

depos1ted 1nto a wake. Such a sudden loss of a fin1te amount of 

vort1c1ty would result in a sudden loss of c1rculat10n, and therefore 

a rap1d decrease 1n ring veloc1ty. We m1ght also expect that as a 

vort1cal chunk 1S convected around the core 1t would eventually show 

up as a bulge in the outermost dyed streaml1ne, moving around the 

vortex ring 1nto the wake--at some t1me later than the occurrence of 

the decrease 1n velocity. 

Bulges follow1ng the pattern Just described have been observed 

1n several of our vortex rings, result1ng 1n an lncrease in RI as the 

bulge moves around the r1ng 1nto the wake (see, for example, F1g. 

A-14b, Append1x A). L1kewise, one can observe 1n the data large 

osc1llations and sudden increases in Rand RI at t1mes which appear to 

be correlated with the periods of rapid veloc1ty change. From the 

hydrogen bubble visual1zations one observes as well periods where the 

vortex core suddenly contorts into an S shape. 

In order to test for a possible correlation, all of these 
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periods of apparent 1nstab1lity were recorded and plotted against the 

nearest period of sudden change 1n vortex ring veloc1ty. Th1s plot is 

shown 1n F1g. 4-9. Many of the reg10ns of 1nstab1lity correlate well 

w1th the reg10ns of sudden velocity change. There 1S certainly a 

suggest10n that the sudden changes 1n the velocity of the vortex r1ng 

are related in some way to the development of instabilit1es along the 

vortex core. 

4-4.3 Additional Observations 

In several runs other observat10ns were made wh1ch should be 

noted. 

ROCKING INSTABILITY. We d1scussed in Sect10n 4-2 the 

trans1t1onal Reynolds numbers wh1ch appear to be character1zed 1n part 

by the occurrence of unusually large-ampl1tude osc11lat10ns. An 

example 1S the vortex r1ng of Run 5, representing a trans1t10n between 

the high Reynolds number, turbulent vortex r1ngs, and the intermediate 

Reynolds number, 1nv1sc1d vortex rings. This vortex r1ng was 

bas~cally turbulent ~n character, but exh~bited an ~nterest~ng 

oscillat10n. From hydrogen bubble visua11zat10ns, we observe that 

early in 1ts 11fe the vortex core suddenly became contorted, mark1ng 

the init1at1on of a two cycle oscillation, or rock1ng motion, as 

1nd1cated schematically in F1g. 4-10. Although the vortex r1ng 

traveled straight up the tube 1t osc1llated through two changes in 

or1entation. Accompanying these changes, the radius of the vortex 

r1ng was observed to 1ncrease and then decrease (see Fig. A-5b). 

S1nce U ~ ~R we observe as well an 1ncrease and decrease 1n the mean 

veloc1ty of the vortex ring around the general 1/t decrease 

characterist1c of turbulent rings. This large amplitude osc1llation 

1n the mean veloc1ty is shown in Fig. 4-11. The p01nts represent the 

velocity computed directly between data values, and the solid curve is 

the 1/t dependence about wh1ch the data p01nts oscillate. The 
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FIGURE 4-10 

The rocking oscillation observed in Run 5. 
The change in radius has been exaggerated for 
clarity. 
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two-cycle oscl.llatl.on 1n veloc1ty shows up as smooth, large-ampl1tude 

deviatl.ons from the mean traJectory curve of Fig. A-5a. 

TURBULENCE IN THE AMBIENT FLUID. In general, the 26 runs for 

which data was reduced were chosen from sequences where motions in the 

ambient flul.d were ml.nimal. Run 8, however, was chosen because the 

turbulence level in the water through which the ring would propagate 

was obviously quite h1gh. Slnce Run number 7 has nearly the same 

inl.tial condl.tions as Run 8, the two traJectories are compared l.n Fig. 

A-8. In1t1ally the traJectories coinc1de, but as the vortex ring of 

Run 8 enters the turbulent regl.on, it abruptly slows down. The sudden 

1ncrease 1n the turbulence level (or 1n the turbulent V1SCOS1ty) 

apparently results l.n a very rapl.d 1ncrease in turbulent dl.ffusion, 

and l.n the loss of vort1city from the vortex rl.ng. The subsequent 

decrease l.n strength and impulse, then, appears as a rapid decrease in 

the velocl.ty of the vortex ring. 

VISCOUS INTERACTION WITH THE TUBE WALL. In Section 4-2 we 

dl.scussed the l.nteract1on of vortex rl.ngs wl.th the tube wall for cases 

where the rl.ng Reynolds number 1S hl.gh enough that upon contact with 

the tube wall, the vortex rl.ng rapidly breaks down into a turbulent 

mass of flul.d. When the Reynolds number is very low, however, changes 

l.n ring structure can come about only through molecular motions. 

Such was the case with Run 24. After formatl.on the vortex ring 

is observed to move towards the tube wall. Upon contact, the core of 

the vortex rl.ng nearest the tube wall l.S observed to grow very large 

1n size, apparently a result of viscous productl.on of vortl.city at the 

tube wall whl.ch l.S of Opposl.te sl.gn to that l.n the core. In this run, 

however, the vortex rl.ng d1d not completely break down at the tube 

wall, but reformed and proceeded to move towards the opposite sl.de of 

the tube. 

Espec1ally slgnif1cant is that in both the period before the 

vortex r1ng made contact with the wall, and after 1t reformed and 
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moved towards the oppos~te wall, the veloc~ty exh~b~ted a power law 

t~me dependence (see F~g. A-24). Th~s observat~on lends support to 

the suppos~tion that a power law ~s character~stic of the velocity of 

vortex rings at very low Reynolds numbers, and therefore 

characteristic of the rate of loss of c~rculat~on due to v~scous 

diffusion. In add~tion, s~nce this vortex r~ng clearly went through a 

breakdown and reformation process as ~t ~nteracted with the tube wall, 

we m~ght conclude that the rap~d changes 1n vortex ring veloc~ty 

observed ~n general between reg~mes are also due to a breakdown and 

reformation of the structure of the vortex ring. 

IRREGULAR OCCLUSION. Along s~m1lar l~nes are the results for a 

turbulent vortex ring formed from a very irregular or1f~ce (Run 26). 

W~th appl1cat10n to arter~al stenoses (see Section 5-4), clay was 

appl~ed to the tube wall around an orif~ce, creating an extremely 

~rregular occlusion. The jet Reynolds number was ~ 44900; a 

turbulent, 1ncoherent vortex r1ng was observed to travel up the tube 

and collide w1th the tube wall always at the same location. As shown 

in F~g. A-26, even for this very 1rregular vortex ring a 1ft 

dependence in veloc~ty is observed w~th a sudden change in speed at 

one, and possible two points in its evolut1on. This lends support to 

a 1ft dependence in velocity as characterist1c of vortex rings which 

are dom1nated by turbulent diffusion. 



5 
Combi11atio11 of 

Theory with Experime11t 

VucaJL.tu' VoJt:te.x SyUem 

5-1 TOTAL CIRCULATION AS A FUNCTION OF TIME 

In Chapter 3 we developed the mathemat1cs to kinemat1cally 

relate the total c1rculat1on of a vortex r1ng 1n a tUbe to 1tS speed, 

slze, and shape. In th1S chapter we use these kinemat1c relat10nships 

to compute the total circulat10n as a funct10n of t1me for our 

exper1mentally produced vortex rings. The concepts beh1nd this 

calculat10n are d1scussed at length 1n Section 2-5. 

COMPUTATION. The bas1c kinematic relat10nsh1ps were derived 1n 

Sect10n 3-4.1, where we related the follow1ng non-d1mens1onal 

parameters: 

A U R 
U = rJ 4nR' E: = Po 

A 

U lS further d1v1ded 1nto Uo 

R' T 
and R or R 

(5-1) 

U , the velocity of the vortex ring 1f 
1 

1t were 1n an unbounded flow less the veloc1ty 1nduced by the presence 
'" of the tube. U, a funct10n only of E:, lS given by Eq. <3-32). Uo 1 

lS paramater1zed uS1ng the core parameter aiR as def1ned by the 

mod1fied Kelv1n/Lamb formula*: 

A 8R 1 
Uo = In a -"3 (5-2) 

*For a detailed descr1ption of the use of aiR see Section 3-4.1. 

102 
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Since the relationships among the parameters 1n (5-1) were 

computed totally from k1nematic cons1derat10ns, they apply at any 

instant in time where the shape of a vortex r1ng is well represented 

by concentrating its total circulation along a c1rcular filament. As 

we d1scussed in Section 2-5, such a representation 1nvolves two 

approx1mat10ns. The f1rst, concern1ng the effect of a finite core on 

the shape of a vortex ring, was addressed 1n Section 3-4.2, and the 

second, which concerns the effect of a wake, will be d1scussed 1n 

Sect10n 5-2.1. 

Because when uS1ng dye v1sualizat10ns, measurements of R' are 

generally more accurate than measurements of R, we recast the 

relationsh1ps 1nvolving R 1nto more useful relationships 1nvolv1ng R'. 

In Figs. 3-11 ~nd 3-12 are shown the calculations for T/R and R'/R as 

a function of aiR for d1fferent values of E. Comb1n1ng these 

calculat10ns we compute T/R' as a function of R'/po for d1fferent 

values of aiR, as shown 1n F1g. 5- 1 • R'/po: 0 corresponds to the 

unbounded vortex ring. As we noted earl1er, we see that the th1ckness 

(and volume) of a vortex r1ng 1ncreases with increas1ng aiR, or 

decreas1ng veloc1ty; for R'/po ~ 0.4 there 1S relatively l1ttle 

influence from the tube wall on the shape of the vortex r1ng. 

The calculat10ns represented by F1gS. 5- 1 and 3-12 are in a form 

sU1tabie for calculat1ng the total c1rculation from flow v1sual1zat10n 

measurements. At any 1nstant in t1me, we compute r as follows: 

1. A flow visualization measurement of T/R' and R'/po defines a p01nt 

on F1g. 5-1. aiR is determ1ned by 1nterpolat1ng between the 

constant aiR curves. 

2. 

3. 

4. 

Knowing aiR and R'/po, E 

wh1ch led to F1g. 3-12. 

1S determ1ned from the calculat10ns 

A A 

Know1ng aiR and E, UO 1S calculated from Eq. (5-2) and U from Eq. 
1 A 

(3-32). Subtracting the two we f1nd U. 

Hav1ng computed U and R (:EPo), we see from Eq. (5-1) that a flow 

v1sual1zation measurement of U Y1elds the total c1rculat10n, r. 
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We have calculated not only the strength of the vortex r1ng, but also 

its radius, R from measurements of RI, T, and U. Th1s algor1thm is 

used with our flow visualizat10n measurements to compute the change in 

total circulation as the vortex r1ngs travel up the tube. 

As discussed in the last chapter, the trajectory, radius, and 

thickness of our exper1mentally produced vortex r1ngs are well 

represented by a mean motion plus oscillations about the mean wh1ch 

result from instab111t1es and waves along the vortex core. Since 1t 

is the mean mot10n with wh1ch we are 1nterested, smooth curves are 

passed through the data to compute r. 
The analysis of the mean trajectory was d1scussed in the last 

chapter. We d1scovered the existence of reg1mes for all our vortex 

r1ngs, where the t1me dependent form of the velocity 1S given by EQs. 

(4-5). The vortex r1ng strength 1S computed uS1ng the values w1thin 

each regime as given in Table A-2. A discont1nuity 1n r will 

therefore occur at the (art1f1cial) points of discont1nu1ty 1n 

veloc1ty between reg1mes. 

A least squares f1t to straight 11ne segments 1S used as well to 

approx1mate the mean values of RI/PO and T/RI. As shown 1n Append1x A 

by the dashed curves, in most cases a stra1ght l1ne is a reasonable 

f1t to the data. As a result, however, small discontinuities are 

necessar1ly 1nserted into the calculation for r . 

RESULTS. The total circulation is calculated as a function of 

time for 17 runs 1n wh1ch the init1al ring Reynolds number ReR ranged 

from 690 to 50 100. These results, plotted along with the velocity of 

the vortex r1ng for comparison, are presented 1n Appendix B, Figs. B-1 

through B-17. The velocity 1S 1ndicated with dashed curves, the 

circulat10n with solid curves. In order to compare the velocity and 

strength in a reasonable way, the scales are adjusted so that each 

tick mark represents roughly 10% of the mean value. 

It should be remembered that the mean values of the vortex ring 

data have been f1tted with piecew1se smooth functions, so that 
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d1scontinuit1es result 1n the plots of velocity and strength. In 

reality, of course, these changes occur smoothly, although over a 

short per10d of t1me. US1ng the least squares ana1ys1s as a gU1de, 

approximate transitions over these short per10ds have been 1ndicated 

with smooth, dotted curves. 

FORMATION. As we expect from Eq. (4-7) and as discussed in 

Sect10n 4-4.1, 1n most cases the strength of a vortex ring as it 

propagates up the tube follows the velocity of the vortex ring. 

However, some differences are apparent. In many cases, even though 

the veloc1ty 1S constant or decreasng at the beginning of a run, the 

strength 1S 1ncreas1ng. Careful examination of the plots in Append1x 

A and the original outl1nes made from the mOV1es ind1cates that the 

vortex ring 1S forming during th1s period and vortic1ty is st1ll be1ng 

concentrated 1n the core. Thus, the strength of the ring increases 

dur1ng th1s format1on process as suggested by the plots. 

UNCERTAINTY. The uncerta1nty 1n these plots is very difficult 

to assess. In order to get a feel for the extent of the osc1llat10ns 

about the mean, the veloc1ty and strength were computed and plotted 

p01nt by point. Th1s 1nvolves the calculation of derivatives by 

tak1ng d1fferences between data p01nts, resulting in deviations from 

the mean which are very large and unreal1stic. Indeed, this is 

perhaps the pr1mary reason for f1tt1ng the vortex ring trajectory with 

a smooth curve before taking derivatives to compute the r1ng veloc1ty. 

Calculating the velocity and strength between every two data pOints, 

however, prov1des a check for the calculations in which mean values of 

the vortex ring parameters are used. 

An example calculation is shown 1n F1g. 5-2 for Run 1. The 

p01nts and dashed l1nes represent the values computed d1rectly from 

th~ data, and the sol1d curve represents the mean computed by f1tt1ng 

the data with piecewise smooth curves. We see from F1g. 5-2 that the 

trans1tion reg10n, which appears as a discont1nuity when the mean 
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curves are used, 1S shown as a smooth but rap1d change when the 

velocity and strength are computed p01nt by p01nt. 

5-2 ACCURACY OF THE COMPUTATION METHOD 

5-2.1 The Effect of Wake Vorticity on R1ng Shape 

The kinemat1c model wh1ch 1S used to compute the circulat10n 1S 

based on two approx1mat10ns (Section 2-5). The effect of a finite 

core on the shape of a vortex ring was assessed in Section 3-4.2 and 

found to be of little consequence. We have yet to assess the 

importance of vorticity in the wake on the shape of a vortex ring. 

Clearly any such effect will be most important for the r1ngs 

w1th the heaviest wakes, so we cons1der the experimentally produced 

vortex r1ngs wh1ch have the h1ghest (Run 1) and lowest (Run 25) 

Reynolds numbers. Taking the d1fference of the initial and f1nal 

strengths from Figs. B-1 and B-17, and div1ding by the distance the 

vortex ring has traveled, we f1nd that for Run 1 the average strength 
2 2 per un1t length 1S ~ 12.3 cm Isec/cm and for Run 25 ~0.15 cm Isec/cm. 

If we now divide by the average total circulat10n of each vortex r1ng 

we find that, on the average: 

strength 1n 1 cm. of wake 

strength of vortex ring 
= 

0.018 
{ 

0.013 

Run 

Run 25 

That 1S, for the h1ghest Reynolds number ring there is about 1.8% of 

the total circulation in 1 cm. of wake and about 1.3% for the vortex 

ring at the lowest Reynolds number. We therefore use Run 1, the worst 

case, to test the 1nfluence of a wake on vortex ring shape. 

We consider the same parameters which were used to test the 

effect of a finite core: E = 0.40 and aiR = 0.25. From the movies we 

observe that trailing vort1city tends to be distributed in a reg10n 
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about half the rad~us of the vortex r~ng. In order to model the wake, 

then, we d~stribute the vort~c~ty w~thin th~s region behind the vortex 

r~ng over two rows of circular vortex filaments. The strength of each 

f~lament is weighted as est~mated for Run 1. Us~ng the linear~ty 

of the B~ot-Savart law, the streamline f~eld ~s computed by summ~ng 

the ind~v~dual f~elds of the vortex elements. 

The streaml~nes for the vortex ring with and w~thout a wake are 

g~ven in F~g. 5-3. The vortex elements which model the wake are 

ind~cated w~th dots. the effect of the wake ~s to distort the 

streamlines behind the vortex r~ng and to cause a slight asymmetry 

about the z = 0 plane ~n the shape of the vortex ring. As is shown ~n 

F~g. 5-3c, the rear end of the r~ng ~s drawn out slightly resulting in 

a sl~ghtly thicker vortex r~ng. 

The d~fference ~n thickness due to the presence of the wake, as 

compared w~th a wakeless vortex ring, ~s about 3%. This is well 

w~th~n the prec~s~on of the exper~mental measurements. Furthermore we 

have chosen a vortex r~ng w~th a heavy wake so that for other rings 

the effect ~s probably not even as great. We therefore conclude that 

the effect of the wake ~s negl~g~ble for typ~cal vortex r~ngs, and the 

s~ze and shape can be accurately pred~cted by concentrating the total 

circulation of a vortex r~ng along a c~rcle. 

5-2.2 Comparisons with Measured and Estimated Values 

We would like to test the accuracy of th~s method with other 

methods for computing the total c~rculat~on of a vortex ring. To do 

this it is necessary to have both flow visual~zation measurements 

of T, R', and U as well as an ~ndependent calculat~on for r 

MEASUREMENT. Sull~van ~~ [60] have measured r, U, R, and 

aiR us~ng a laser doppler velocimeter (LDV) for two vortex rings 

produced in air at d~fferent Reynolds numbers. They include a 

photograph for one vortex r~ng, that with the lower value of Reynolds 
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FIGURE 5-3 

The streamlines for a vortex ring w~th a wake 
compared with a wakeless vortex ring. 
a) The wakeless vortex ring. 
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,(b) 

FIGURE 5-3 

The streamlines for a vortex ring with a wake 
compared with a wakeless vortex ring. 
b) The vortex ring with a wake. 

t:;;~F<~:'without a wake 

with a wake 

(c) 

c) Comparison of outermost closed streamlines. 
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number (Re R = 3040, Rer = 7780), thus allowing compar~son w~th our 

method. Measurements w~th the LDV requ~re the repeatable product~on 

of vortex rings, so the photograph ~s only one of many r~ngs measured. 

By integrat~ng the measured veloc~ties around the core, they 

calculated a total c~rculat~on of 1124 cm 2 /sec. Using the photograph 

to measure T and RI and the~r measurement for U we calculate with our 

method a total circulat~on of 1135 ± 60 cm 2/sec. 

ESTIMATES. The init~al strength of our exper~mentally produced 

vortex rings can be approx~mated by relat~ng the total circulat~on of 

the fluid ejected by the piston to the Jet veloc~ty and orif~ce s~ze. 

If you consider a slug of fluid of length L ejected from the orif~ce 

w~th velocity u.(z) the total c~rculat~on content of the ejected fluid 
J 

~s g~ven by*: 
L 

r . = f u. dz 
eJ 0 J 

(5-3) 

The total c~rculat~on of a newly formed vortex r~ng ~s therefore 

approx~mately g~ven by 

r(to) = ~(to) r. 
• eJ 

eJ 

(5-4) 

where Veto) ~s the in~t~al volume of the vortex r~ng and V . is the 
eJ 

volume of flu~d ejected from the orif~ce. Using these expressions, 

the in~tial strengths of our vortex r~ngs were est~mated and compared 

w~th our calculated values. 

In F~g. 5-4 are shown the compar~sons between the values of 

total c~rculat~on calculated using the kinematic theory, and the 

values measured by Sullivan ~~ and est~mated from Eq. (5-4). The 

comparison is felt to be excellent. 

*This expression, which is straightforward to derive, agrees with 
that used by Saffman (55) to estimate the initial circulation of 
vortex rings. Maxworthy (36), however, includes a factor of 1/2 
for reasons which are unclear. 
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VORTEX RING RADIUS. Earlier we pointed out that 1n the process 

of computing the strength of vortex rings from measurements of T, R', 

and U we compute the radius R as well. For most of our dye 

visualizations the estimates of R are not accurate enough to warrant 

comparisons with the computed values of R. For Runs 13 and 15, 

however, we were able to obta1n accurate measurements of both R' and R 

due to the presence of clear water along the core centerline. We were 

also able to provide a good estimate for R in Run 14, although not as 

accurate as for the other two runs. It would be of interest, 

therefore, to compare the data for these runs with the mean values of 

R computed using the kinematic theory. These compar1sons are shown by 

solid curves 1n Figs. A-13b, A-14b, and A-15b of Appendix A. The 

comparisons for Runs 13 and 15 are excellent and for Run 14 qU1te 

good. It is interesting that in both Runs 13 and 14 the predicted 

value for R initially decreases as does the data. We also made the 

comparison between the computed values of R from the dye visualization 

of Run 9 with the hydrogen bubble measurements for R in Run 10. These 

two runs were found from the trajectory and experimental parameters to 

be very close to one another. The solid line through the data in F1g. 

A-lOb shows the compar1son and once again 1S quite good. 

One additional note can be made with regard to the accuracy of 

the Kelvin/ Lamb formula, Eq. (2-15). Sul11van's measurements suggest 

that the Kelvin/ Lamb formula overestimates the velocity of vortex 

r1ngs by as much as 30 to 40%. Thus, even 1f it were possible to 

measure aiR US1ng flow visua11zat1on, the express10n cannot be 

expected to accurately predict the strength of a vortex r1ng. 

5-3 VORTEX RINGS AND THE REYNOLDS NUMBER 

REYNOLDS NUMBER RELATIONSHIPS. As discussed in Section 2-4.2, 

two definit10ns for the Reynolds number have been commonly used to 
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character~ze vortex r~ngs: 

Re = 2UR 
R \l 

Re = r 
r 
\l 

(5-5 ) 

As we found from Eqs. (2-16) and (~-22b) r 'V UR so we expect ReR and 

Re r to be closely related. Hav~ng computed r for our experimentally 

produced vortex rings, it would be of interest to compare these two 

defin~tions. In Fig. 5-5 we have plotted Re R against Re r for our 

newly formed vortex rings. This plot suggests that at the initial 

time of formation, to: 

(at t = ~ ) 

Inserting the defin~tions in (5-5) results in: 

r ~ 4UR (at t = to) 

(5-6 ) 

(5-7) 

The KelvinlLamb formula, Eq. (2-17) suggests that the proportionality 

factor between -r and UR is a function of the core size, aiR: 

r = 4nUR [ 8R 1 ]-1 
tn - --a 3 

(5-8) 

Using th~s formula together with Eq. (5-7) to est~mate the core 

parameter of the newly formed vortex rings we find that 

aiR 'V 0.25 (at t = to) (5-9) 

It was for this reason that aiR = 0.25 was chosen in our assessment of 

the effect of a finite core (Section 3-4.2) and wake (Section 5-2.1) 

on the shape of a vortex r~ng. 

It would also be of interest to study relationships between the 

Reynolds number of vortex rings and a Reynolds number based on the 

ejection of fluid from the orifice. We have observed qualitatively 

that as the jet Reynolds number increases, so does the ring Reynolds 

number. In Fig. 5-6 we have plotted ReR and Re r against Re j on a 

log-log scale. We note that at Re
j 

'V 25000 there is an abrupt change 
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in the trend. This suggests transition to turbulence in the Reynolds 

number ranges: 

Re j 20000 - 30000 

ReR 25000 - 35000 

Re 50000 - 70000 
r 

REYNOLDS NUMBER GROUPS. In Section 4-4 we discussed 

correlations between the three Reynolds number groups of vortex rings, 

and the rate at which vorticity diffuses from the core and is 

convected into the wake. These ideas are supported by our 

computations of the time rate of change in strength, shown in Appendix 

B. The rate of decrease in total circulation from high Reynolds 

number, turbulent vortex rings is observed to be much greater than the 

rate for low Reynolds number, viscous vortex rings, an indication of a 

more rapid rate of diffusion due to turbulent motions as compared with 

molecular motions. Most interesting, perhaps, 1S the very wide range 

of 1ntermediate Reynolds numbers in which the strength of the vortex 

ring changes very little (in a regime), consistent with the absence of 

an observable wake. These vortex rings appear to have a basically 

inviscid character. 

In order to characterize these groups in a concise way consider 

the coefficient of drag for a vortex ring defined in the usual way as 

D 1S the drag force on the vortex ring, U its speed, and S the frontal 

surface area. D and S are given by: 

s = 1TR,2 

Inserting these values into (5-10) yields 

8 T dU 
3U2 dt (5-11 ) 
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In the case of a solid sphere drag ~s a result of shear forces 

along the sphere's surface and flow separat~on beh~nd the sphere. The 

drag force of a vortex r~ng, however, results from the loss of 

vortic~ty, strength, and impulse from w~thin the volume of fluid 

comprising the vortex ring. W~thin a regime, the h~gh and low 

Reynolds number vortex rings w~ll therefore have a value of CD 

consistent w~th the rate at which they lose vortic~ty, whereas vortex 

r~ngs at intermed~ate Reynolds numbers exh~b~t no drag, and thus have 

a zero coefficient of drag. 

S~nce it is the mot~on with~n reg~mes which characterizes the 

three groups of vortex rings, we choose po~nts in the m~ddle of each 

reg~me to compute CD. These values are shown plotted aga~nst Re r ~n 

F~g. 5-7. Th~s figure n~cely ~llustrates the three groups of vortex 

r~ngs. The high Reynolds number, turbulp.nt vortex r~ngs have the 

h~ghest values of CD; the low Reynolds number, viscous rings have 

generally lower values of CD; and those vortex r~ngs ~n the 

intermed~ate Reynolds number, "inv~scid" group have zero coeff~cient 

of drag. 

The transition reg~on between these groups is expected to depend 

in general not only on the Reynolds number, but also on such factors 

as geometry and roughness of the orif~ce, piston speed 

character~st~cs, the state of the ambient flu~d into wh~ch the vortex 

ring propagates, etc. 

5-4 ARTERIAL STENOSES AND THE WALL PRESSURE 

A motivation for the study of vortex rings propagating up a tube 

is its applicat~on to arter~al stenoses. An arterial stenosis is a 

constr~ctiQn in an artery which results from the bu~ldup of 

cholesterol along the arterial wall, or from a d~seased heart valve 

which will not open completely. As blood is forced through these 
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constr~ctions, sounds called murmurs are produced. Murmurs can be 

heard with a stethoscope, and have been used in a qual~tative way for 

years to assess the severity of a stenosis. To determ~ne with 

precis~on the degree and locat~on of a stenosis, however, usually 

requ~res ~nvest~gative surgury or the use of radioact~ve tracers. 

In recent years ~nterest has developed ~n the possibil1ty of 

using murmurs in ~ more quant~tative way ~n order to pred~ct w~th more 

accuracy the severity and location of a stenosis. Understand~ng the 

source of murmurs, however, requ~res an understanding of the 

formation, development, and structure of the turbulent flowf~eld which 

is produced as blood is forced through the constriction. 

Based on the suggestion that the flow of blood through a 

stenosis reaches a quas~-steady state at peak systole, studies in the 

past have concentrated mainly on steady flow models [65]. As is shown 

~n Fig. 5-8, however, the accelerat~on of blood into the aorta ~s 

extremely rap~d (",4650 cm/sec 2 ), so that, at least for a valvular 

stenos~s, the flow is dom~nated by pulsat~le effects. Farther from 

the heart a steady component ~s superposed over the ejection pulse, 

but pulsatile effects, espec~ally for h~ghly occluded vessels, are 

st1ll expected to play an ~mportant role ~n the development of the 

post-stenotic flowfield. 

As 1S ind~cated 1n F~g. 5-8 our experiment was des~gned using 

parameters relating to the arter~al stenos~s. Because the peak 

Reynolds number of blood ejected from the aorta ~s about 5000 we chose 

tube Reynolds numbers of roughly 5000, 4000, and 3000, and a piston 

travel time of roughly 0.170 seconds to correspond to a single 

eject~on of blood from the heart. W~th regard to arter~al stenoses we 

are most ~nterested ~n the smallest or~f~ces which correspond to the 

highest degree of occlusion. These orifices are associated with the 

production of turbulent vortex rings followed by the production of a 

turbulent Jet. Entirely a result of the pulsatile nature of the flow, 

the vortex r~ng travels up the vessel and collides with the vessel 

wall, causing large pressure fluctuations. 
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o 0.5 1.0 

time (sec) 

FIGURE 5-8 
Speed and Reynolds number of blood ejected from 
the human heart into the aorta. 
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IRREGULAR OCCLUSION. In order to visualize the development of 

vortex rings with a more physiologically realistic occlusion, an 

orifice was made very irregular by applying clay to the tube 1nter10r 

to an area reduct10n of roughly 92%. It was found that highly 

turbulent, rather incoherent vortex rings could still be readily 

identified and observed to travel up the tube, col11ding w1th the tube 

wall always at the same locat1on. 

WALL PRESSURE. Since the fluctuations of the arterial wall are 

heard at the surface of the body as noise we would 11ke to analyse the 

pressure at the tube wall due to the passage of a vortex ring, and 

compare th1S with an est1mate of the magn1tude of pressure 

fluctuations Wh1Ch might result from a collision with the arter1al 

wall. The pressure at the tube wall can be calculated from the 

unsteady Bernoulli equat10n: 

o<P 2 
P + ~p u + p 

m at m 
constant (5-12) 

U 1S the velocity at the tube wall and <P 1S the unsteady potent1al 

funct1on. Since 
t 

<P <p(Po, z - f U(s) ds ) 
o 

we f1nd that the pressure at the tube wall relat1ve to the pressure at 

1nf1nity is given by: 

P - P = 
00 

- kp (u2 - 2uU) 
2 m (5-13) 

where U 1S the velocity of the vortex ring. We wr1te u in the 

non-dimensional form: 

r 
u(PQ, z) = 4nR u(po, z) 

f' 
Computat10ns for u, obtained by taking the z der1vative of <P in Eqs. 
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The non-dimensional wall velocity as a function 
of zIp for different values of E. 
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(3- 1 9), (3-23) and (3-27) are given in Fig. 5-9 for different values 

of £ 

In order to compute the pressure at the tube wall as a vortex 

ring passes by we need to know r, U, and R as a function of time. U 

and R are obtained from exper1mental measurements, and we now have 

computations for r. Since we are concerned most with the smallest 

occlusions wh1ch produce the most energetic vortex rings, we compute 

the pressure as a funct10n of t1me at 1.5 tube d1ameters from the 

orifice for Runs 1 and 3. The results are given in Figs. 5-10 and 

5-11. Time 1S measured from the formation of the vortex r1ng and the 

vert1cal 11ne ind1cates the t1me at which the vortex r1ng passes the 

point where the pressure 1S computed. We note that the peak pressure 

drop does not necessar1ly c01nc1de w1th the t1me when the vortex ring 

is 1.5 diameters downstream, and that the pressure profile is 

asymmetr1c. Th1s is because the vortex r1ng 1S both loosing strength 

\ and increasng 1n size as it travels up the tube. 

The peak pressure change at the tube wall due to the passage of 

these turbulent vortex rings is apparently on the order of 1/3 - 1 

mbar. It is interesting to note that this 1S the same order of 

magnitude as the peak rms wall pressure measured in steady flow models 

of arterial stenoses [65]. 

The pressure resulting from a collision w1th the vessel wall, 

however, can be expected to be much higher. Using Eq. (2-14) to 

estimate the 1mpulse of the vortex r1ng, one can obtain an order of 

magnitude estimate for the pressure imparted to the tube wall due to a 

coll1sion by a vortex r1ng. Based on values for the smallest or1fices 

one estimates pressures at least one order of magnitude larger than 

what 1S shown in Figs. 5-10 and 5- 11 • This would suggest that the 

product10n of vortex r1ngs beh1nd arterial stenoses m1ght be 1mportant 

w1th respect to flow-induced vibrations at the vessel wall. Indeed, 

the repetition 1n col11sions of vortex rings with the vessel wall 

behind an arterial stenosis might account for the commonly observed 

phenomenon of post-stenot1c dilatation--the weakening of the arter1al 

wall behind an arterial stenosis. 
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FIGURE 5-11 

The pressure at the tube wall 1.5 
tube diameters from the orifice for Run 3. 
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6 
Summary 

As is indicated by the title of this report, kinematic and 

dynamic aspects of vortex ring propagation in a tube have been 

discussed. The kinematics is embodied in the mathemat1cs wh1ch was 

developed in Chapter 3, and the dynam1cs enters via the flow 

visualizat10n measurements d1scussed 1n Chapter 4. Using the purely 

kinematic theory together with the data, we computed the change in 

vortex r1ng strength as a function of time, a dynam1c result. We 

should now like to summarize what we have learned. 

KINEMATICS. We exploit two important properties of the 

B10t-Savart Law. F1rst, since only conservation of mass for an 

incompressible flow is used in its der1vat10n, it 1S a purely 

kinemat1c express10n. Whether the flow 1S viscous in character or is 

dominated by turbulent fluctuations, if the vorticity field is known 

or can be adequately modeled at a g1ven instant in t1me, then the 

velocity field can 1n priciple be computed at that t1me from the 

Biot-Savart Law. We provide such a model for a vortex ring in a tube 

in order to compute the k1nematic relationships among the vortex ring 

veloc1ty, radius, thickness, and strength. To the extent to which our 

model is accurate in computing these relat10nships, it app11es for all 

vortex rings be they viscous in nature, or highly turbulent. 

Another important aspect of the Biot-Savart Law is the linearity 

of the vorticity field with respect to the velocity field. Making use 
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of this property we split the vort1city f1eld 1n two parts: the 

vortex ring itself, and the wake. We found that effects of the wake 

on the shape of the vortex r1ng are at most about 3% and can be 

neglected. 

In addition, we show that the effect of a fin1te core on the 

vortex r1ng shape 1S slight, so that we can accurately model the 

vortex ring by concentrating 1tS total circulat10n along a c1rcular 

vortex filament placed aX1symmetrically 1n a tube. In a frame of 

reference fixed w1th respect to the tube we f1nd that the outer 

flowf1eld of a bounded vortex r1ng, like the unbounded vortex r1ng, 

has a dipole character, but w1th more of an axial flow due to the 

conf1n1ng nature of the tube (Fig. 3-4]. The wall-induced flow on the 

vortex ring is 1n a d1rection opposite to 1tS mot10n [Fig. 3-5] so 

that the tube acts to slow the vortex r1ng down. The extent to which 

the speed of the vortex r1ng is decreased (as compared with the same 

r1ng 1n an unbounded flow) depends on the relat1ve rad1US of the 

vortex r1ng to that of the tube (Eq. (3-32), Fig. 3-7]. 

In a frame of reference mov1ng with the vortex r1ng, the extent 

of the vortex ring, that 1S, the volume of flu1d mov1ng with the core 

1S def1ned. The speed w1th which the vortex ring travels depends on 

dynamic cons1derat10ns such as the change 1n size of the core, the 

d1str1but10n of vortic1ty, etc.; however, general k1nemat1c 

relationships among the r1ng velocity, strength, slze, and shape must 

be met at all times. We compute these relat10nships (F1gS. 3-11 and 

3- 12], and f1nd that, for a vortex ring with spec1f1ed strength and 

size (i.e., radius), the thickness and volume of the vortex r1ng 

1ncreases w1th decreas1ng speed. In add1tion, we find that the effect 

of the tube 1S to 1ncrease its volume further. Thus, from k1nemat1cs, 

we conclude that the effect of a tube on a vortex r1ng is, 1n general, 

to decrease 1tS velocity and 1ncrease 1tS volume as compared with the 

same vortex r1ng in an unbounded flow. 
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DYNAMICS. Once the total circulation, rad1us, and veloc1ty of a 

vortex ring have been established from the dynamic processes of vortex 

formation, convection, and d1ffus10n, the shape of the vortex ring is 

specified by the kinematic relationships just described. We therefore 

work backwards, and from measurements of the veloc1ty, rad1us, and 

thickness of a vortex ring traveling up a tube, determine its total 

circulation as a function of time-- a dynamic calculation. It should 

be kept in m1nd, however, that the dynam1cs enters through the 

experimental measurements of the time rates of change in ring 

velocity, th1ckness, and radius--the role of k1nemat1cs 1S to relate 

these quantities at any 1nstant in t1me to the total circulation of 

the vortex ring. 

W1th experimental measurements of vortex rings from very low to 

very high Reynolds numbers we f1nd that the vortex r1ngs can be 

divided 1nto three groups which are characterized by the rate at wh1ch 

total circulation is lost from the r1ng into a wake [Fig. 5-7]. At 

very high r1ng Reynolds numbers (Re R 'V 20000 - 30000 and above), 

turbulent d1ffusion of vort1c1ty and 1tS subsequent convect10n out of 

the vortex ring results in a roughly 1ft decrease 1n r1ng velocity and 

strength. On the other hand, at very low Reynolds numbers (rv 1000 -

2000 and below) the much slower process of molecular d1ffusion results 

in a less rapid decrease 1n vortex ring velocity and strength, l1ke 
a 

1ft where a'V 0.13 to 0.27 for our exper1mentally measured vortex 

rings. There is a very wide range of intermed1ate Reynolds numbers 

('V 2000 - 20000), however, where the vortex ring has bas1cally an 

inviscid character. Viscous d1ffusion proceeds at such a slow rate 

that very 11ttle vort1city is lost from the vortex r1ng, and the total 

circulation of the vortex ring remains essent1ally constant. 

We also discovered, however, that for all our exper1mentally 

produced vortex r1ngs, periods of rapid change in ring velocity and 

strength would per10dically occur. That is, the time dependent forms 

of ring velocity and strength just described are 1dentif1ed in 

reg1mes, two regimes be1ng separated by a rap1d change in ring 
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velocity and strength. These per10ds of rap1d change are postulated 

to result in some way from the growth of unstable waves along the core 

of the vortex r1ng which, as they break, m1ght result 1n a per10d1c 

reorganization of the core. 

Relating to pulsat1le effects in arter1al stenoses, the pressure 

at the tube wall 1.5 d1ameters from the orif1ce was calculated for our 

smallest occlus1on. It was found that the maximum drop 1n pressure as 

these vortex r1ngs travel up the tube 1S on the order of 1/2 mbar, the 

same order of magnitude as the peak rms pressure measured 1n steady 

flow models. Col11s1ons of vortex r1ngs w1th the vessel wall, 

however, m1ght result 1n s1gn1f1cantly higher pressure fluctuat10ns, 

accounting perhaps for the observat10n that beh1nd an arter1al 

stenosis the vessel wall 1S often found to be weakened. 

SIGNIFICANCE AND FUTURE STUDY. We have found from our 

exper1mental measurements that vortex r1ngs behave in a viscous, 

turbulent, or 1nvisc1d manner, depend1ng 1n large part on the Reynolds 

number. Although other researchers have observed the V1SCOUS and 

turbulent reg1ons, the existence of a group of vortex rings w1th an 

1nvisc1d character had not been prev10usly estab11shed. L1kew1se, 

although other researchers have observed single per10ds of breakdown 

and rap1d change 1n veloc1ty for turbulent vortex rings, 1t is 

s1gn1f1cant that trans1t10n per10ds have now been observed for vortex 

rings at all Reynolds numbers, and 1n many cases more than one. 

Such observat1ons have relevance not only wlth respect to the 

evolutlon of slngle vortex rlngs, but wlth more compllcated flows 

involvIng concentrated reg10ns of vort1c1ty. The dlfferent rates at 

wh1ch circulat10n 1S lost from the core m1ght have lmplicat10ns w1th 

respect to the evolut1on of more general vortex flows. The rapid 

changes 1n vortex strength and the poss1ble 1nstabi11ty mechan1sms 

assoc1ated w1th them mlght playa role in the production of smaller 

scales of turbulence from larger scales, espec1ally for shear flows. 

If found to be the case in more general turbulent flows, sudden 
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losses of vort~city as vortex tubes become unstable, break, and 

reform, when averaged over long periods of time might produce large 

contributions to a turbulent viscosity. In addition, since the sound 

field in turbulent jets arises from non-steady oscillations in the 

potential funct~on, sudden changes in vortex ring strength (and 

therefore in the potential field) might be expected to result in the 

production of noise. It would be of considerable practical interest, 

therefore, to examine these periods of rapid change in vortex ring 

strength in more detail, to determine what mechanisms are involved, 

and to search for such mechanisms in the development of more general 

turbulent flows. 

Using the kinematic nature of vorticity we have developed a 

method to calculate the total circulation of vortex rings from flow 

visualization measurements. This technique is considerably simpler to 

apply than previous methods which require knowledge of the velocity 

field w~thin the vortex ring, and we now have the ability to compute 

the time rate of change in strength for single vortex rings as they 

propagate. With respect to the evolution of vortex rings, then, it 

would be of interest to apply this technique to more extended studies. 

For example, by vary~ng systematically the piston character~stics, 

volume of fluid ejected, type of orifice used, etc. additional 

relationships between the initial conditions and the loss of 

circulation from the vortex r~ng as it evolves can be established. 

We might note in closing that the technique we have developed to 

calculate the total circulation of vortex rings from flow 

visual~zat~on measurements can be applied Just as well to the study of 

vortex pairs, with applicat~on, for example, to studies of tra~ling 

vort~ces behind airfoils with f~n~te span. 



APPENDIX A 

VORTEX RING TRAJECTORY, SIZE, AND SHAPE PLOTS 

for Runs 1 - 26 

definitions: 

x D1stance from the orifice. [cm]. 
r 

t T1me. [sec.] 

R Radius of vortex ring to core centerline. 

R' Radius of vortex ring to outermost dyed region. 

T Thickness of vortex r1ng to outermost dyed region. 

V Volume of vortex ring, 4/3 7T R ,2T 

Vej Volume of fluid eJected through the orifice. 

Table A_1: Summary of exper1mental values for each run. 

Table A-2: Summary of regime slopes for each run. 

F1gures A-1 to A-26: 

a) Vortex r1ng trajectory plots 

b) Vortex r1ng size and shape plots 
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d (sec. ) (in. ) (em/sec) (em) 
ReT T X u Re

j uj Run D P P p. d 

1 dye .1000 5598 .169 .300 4.509 55978 450.9 1.188 

2 dye .1000 4254 .172 .232 3.426 42540 345.6 1.188 

3 dye .1000 2471 .208 .163 1.990 24712 199.0 1.188 

4 dye .1497 5840 .162 .300 4.704 38931 209.05 1. 778 

5 H2 .1497 5468 .173 .300 4.405 36456 195.8 1. 778 
-

6 dye .1497 4426 .166 .233 3.565 29508 158.4 1. 778 

7 H2 .1497 3858 .188 .230 3.107 25719 138.1 1. 778 

8 H2 .1497 3719 .195 .230 2.996 24796 133.2 1. 778 

9 dye .1497 2650 .194 .163 2.134 17664 94.8 1. 778 

10 H2 .1497 2675 .191 .162 2.154 17831 95. 75 1. 778 

11 dye .2525 6224 .152 .300 5.013 24649 78.63 3.000 

12 H2 .2525 5419 .174 .299 4.365 21461 68.38 3.000 

13 dye .2524 2623 .196 .163 2.112 10388 33.13 3.000 

14 dye .3207 5406 .175 .300 4.354 16857 42.33 3.810 

15 dye .3207 4025 .178 .230 3.282 12550 31.91 3.810 

16 dye .3207 2647 .193 .162 2.132 8254 20.73 3.810 

17 dye .4209 6143 .154 .300 4.948 14596 27.94 5.000 

18 H2 .4209 5409 .172 .295 4.356 12852 24.62 5.000 

19 dye .4209 4266 .170 .230 3.436 10136 19.40 5.000 

20 dye .4811 5468 .174 .300 4.405 11366 19.04 5.715 

21 H2 .4811 5715 .165 .299 4.603 11881 19.88 5.715 

22 dye .4811 3871 .189 .232 3.118 8048 13.48 5.715 

23 dye .4811 2554 .200 .162 2.057 5310 8.891 5.715 

24 dye .6414 5005 .189 .300 4.032 7803 9.800 7.620 

25 dye .6414 3899 .186 .230 3.141 6079 7.635 7.620 

26 dye "'.3 "'13470 "'.070 .299 10.85 "'44900 "'120 Ad/~ "'.92 

TABLE A-I 

Summary of experimental values for each run 



Run Al A2 A3 Bl B2 B3 Y1 Y2 Y3 

1 23.244 27.636 
2 22.803 28.364 
3 24.236 26.948 (70.128) 
4 17.253 23.240 (28.725) 85.741 
5 15.997 18.721 (rocking oscillation) 
6 110.20 88.346 
7 101.52 86.500 
8 turbulence 
9 83.686 70.421 63.520 } repeatability 10 83.836 70.435 62.410 

11 41. 363 37.861 
12 35.807 32.448 28.995 
13 19.249 17.016 
14 18.145 16.676 14.358 
15 14.532 13.715 13.056 
16 7.175 6.518 6.017 
17 9.813 8.866 8.550 
18 8.417 7.816 
19 6.694 5.944 
20 4.819 4.396 
21 6.252 
22 3.853 (3.170) .8280 
23 (1. 562) .8239 .7650 
24 .8664 .7313 
25 .8623 .7681 
26 3.913 5.974 10.873 (irregular occlusion) 

-- -- ---- ------------

TABLE A-2 group 1: 

Summary of regime slopes for each run group 2: 

group 3: 

(x) = em 

C1 C2 C3 

1.568 
2.529 2.875 
2.202 2.989 
2.093 2.589 

x = A In t + const. n 
x .. B t + const. n 
In x - Y In t + In C n n 

(U) = em/sec. 
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FIGURE A-7a 
Run 7 dID = 0.15 Re. 25719 
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FIGURE A-9a 
Run 9 dID 0.15 
Dye 

Re = 17664 
j 

Repeatability: see Fig. 4-8 
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FIGURE A-lOa 
Run 10 diD 0.15 Re. = 17831 

H2 
J 

Repeatability: see Fig. 4-8 
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FIGURE A-lla 
Run 11 dID = 0.25 
Dye 

Re. = 24649 
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Dye 
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FIGURE A-14a 
Run 14 diD = 0.32 
Dye 

Re. 
J 

16857 
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FIGURE A-15a 
Run 15 dID 0.32 
Dye 

Re. 
J 

12550 
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FIGURE A-16a 
Run 16 dID = 0.32 
Dye 

Re. = 8254 
J 
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FIGURE A-17a 
Run 17 diD = 0.42 
Dye 
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Run 18 dID = 0.42 
H2 

Re. = 12852 
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FIGURE A-19a 
Run 19 diD = 0.42 
Dye 
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FIGURE A-20a 
Run 20 dID 0.48 
Dye 

Re. 
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The "apparent" decrease in R' and R is due to the 
bending back of the vortex ring (Section 4-2). 



FIGURE A-26 
Run 26 Ad/~- 0.92 
Dye 

Ret' 44900 

Irregular occlusion (Section 4-4.3 and 5-4). 

Appendix A 186 

o 
II) 
10 ...... 
II) 

E 

c .... 



APPENDIX B 

VORTEX RING STRENGTH AND VELOCITY PLOTS 

Table B-1: Initial vortex ring parameters for each run 

Figures B-1 to B-17: Computed values of total circulation as a 

function of time plotted with the vortex ring 

velocity. 
Total circulation, or strength: solid curves 
Vortex ring velocity: dashed curves 

187 
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(sec. ) 2 (em Isec.) 

Run 
t 

0 
£ ro Re

R 
Re r 

1 .112 .19 827 50144 89560 

2 .102 .13 731 35091 76393 

3 .170 .18 684 31050 71481 

4 .122 .20 756 35233 79005 

5 .145 .28 38045 

6 .100 .25 584 33858 61030 

7 .126 .26 33101 

8 

9 .126 .23 460 23421 48072 

10 .136 .25 26459 

11 .186 .30 311 15181 32501 

12 .180 .31 13845 

13 .370 .31 118 7455 12331 

14 .450 .42 220 9530 22991 

15 .500 .40 120 7217 12540 

16 .960 .36 52.2 3197 5455 

17 .583 .38 100 4641 10450 

18 

19 1.327 .47 64.6 3894 6751 

20 1.489 .38 54.2 2291 5664 

21 

22 1.170 .45 34.5 2205 3605 

23 3.00 .44 14.5 937 1515 

24 

25 3.693 .37 13.0 688 1359 

26 

TABLE B-1 

Initial vortex ring parameters for each run 
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The true artist is a tiaeuLto 

he paints with red-and-black ink 

with black water 

the true artist is wise 

god is in his heart he paints god 

into things 

he knows all colors 

he makes shapes he draws feet 

and faces 

he paints shadows 

he is a Toltec 

he has a dialogue with his own heart 

-poems from ancient Mexico 
retold from Nahuatl texts 

To Agl1e,6 
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